Given: Two vertices of the triangle are \( A(2, 4, 6) \) and \( B(0, -2, -5) \), and the centroid is \( G(2, 1, -1) \). Let the third vertex be \( C(x, y, z) \).
\( \frac{2 + 0 + x}{3} = 2, \quad \frac{4 - 2 + y}{3} = 1, \quad \frac{6 - 5 + z}{3} = -1 \).
\( \frac{\alpha - 4}{1} = \frac{\beta - 1}{2} = \frac{\gamma + 4}{4} = \frac{-4 + 2 - 16 - 11}{1 + 4 + 16} \).
\( \frac{\alpha - 4}{1} = \frac{\beta - 1}{2} = \frac{\gamma + 4}{4} = \frac{-25}{21} \).
\( \alpha\beta + \beta\gamma + \gamma\alpha = (6 \cdot 5) + (5 \cdot 4) + (4 \cdot 6) \).
\( 30 + 20 + 24 = 74 \).
Final Answer: \( \alpha\beta + \beta\gamma + \gamma\alpha = 74 \).
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: