Given: The triangle \( OAB \) is an equilateral triangle, and the point \( P \) divides \( AB \) in the ratio \( 2:3 \).
\( \cos 60^\circ = \frac{OA^2 + AP^2 - OP^2}{2 \cdot OA \cdot AP} \).
\( \frac{1}{2} = \frac{\lambda^2 + \frac{4\lambda^2}{25} - OP^2}{2 \cdot \lambda \cdot \frac{2\lambda}{5}} \).
\( \frac{1}{2} = \frac{\lambda^2 + \frac{4\lambda^2}{25} - OP^2}{\frac{4\lambda^2}{5}} \).
\( \frac{2\lambda^2}{5} = \lambda^2 + \frac{4\lambda^2}{25} - OP^2 \).
\( OP^2 = \lambda^2 + \frac{4\lambda^2}{25} - \frac{2\lambda^2}{5} \).
\( OP^2 = \frac{25\lambda^2}{25} + \frac{4\lambda^2}{25} - \frac{10\lambda^2}{25} \).
\( OP^2 = \frac{19\lambda^2}{25} \).
\( OP = \sqrt{\frac{19\lambda^2}{25}} = \frac{\sqrt{19}}{5} \lambda \).
Final Answer: \( OP = \frac{\sqrt{19}}{5} \lambda \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 