Given: The triangle \( OAB \) is an equilateral triangle, and the point \( P \) divides \( AB \) in the ratio \( 2:3 \).
\( \cos 60^\circ = \frac{OA^2 + AP^2 - OP^2}{2 \cdot OA \cdot AP} \).
\( \frac{1}{2} = \frac{\lambda^2 + \frac{4\lambda^2}{25} - OP^2}{2 \cdot \lambda \cdot \frac{2\lambda}{5}} \).
\( \frac{1}{2} = \frac{\lambda^2 + \frac{4\lambda^2}{25} - OP^2}{\frac{4\lambda^2}{5}} \).
\( \frac{2\lambda^2}{5} = \lambda^2 + \frac{4\lambda^2}{25} - OP^2 \).
\( OP^2 = \lambda^2 + \frac{4\lambda^2}{25} - \frac{2\lambda^2}{5} \).
\( OP^2 = \frac{25\lambda^2}{25} + \frac{4\lambda^2}{25} - \frac{10\lambda^2}{25} \).
\( OP^2 = \frac{19\lambda^2}{25} \).
\( OP = \sqrt{\frac{19\lambda^2}{25}} = \frac{\sqrt{19}}{5} \lambda \).
Final Answer: \( OP = \frac{\sqrt{19}}{5} \lambda \).
If the inverse point of the point \( (-1, 1) \) with respect to the circle \( x^2 + y^2 - 2x + 2y - 1 = 0 \) is \( (p, q) \), then \( p^2 + q^2 = \)