Question:

If the coefficient of x7 in expansion of \((ax- \frac{1}{bx^2})^{13}\) is equal to the coefficient of x-5 in expansion of \((ax + \frac{1}{bx^2})13\), then a4b4 is ______

Updated On: Jan 11, 2025
  • 22

  • 44

  • 11

  • 33

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given:

The general term of the binomial expansion is:

\( T_{r+1} = \binom{13}{r} a^{13-r} \left(-\frac{1}{b}\right)^r x^{13 - 3r} \) \quad \((1)\)

  • Step 1: Coefficient of \( x^7 \):

    \( 13 - 3r = 7 \implies r = 2 \).

    Substitute \( r = 2 \) into (1):

    \( T_3 = \binom{13}{2} a^{11} \left(-\frac{1}{b}\right)^2 x^7 \).

    Simplify:

    Coefficient of \( x^7 = \binom{13}{2} \frac{a^{11}}{b^2} \).

  • Step 2: Coefficient of \( x^{-5} \):

    \( 13 - 3r = -5 \implies r = 6 \).

    Substitute \( r = 6 \) into (1):

    \( T_7 = \binom{13}{6} a^7 \left(-\frac{1}{b}\right)^6 x^{-5} \).

    Simplify:

    Coefficient of \( x^{-5} = \binom{13}{6} \frac{a^7}{b^6} \).

  • Step 3: Condition: Coefficient of \( x^7 = x^{-5} \):

    \( \binom{13}{2} \frac{a^{11}}{b^2} = \binom{13}{6} \frac{a^7}{b^6} \).

    Simplify:

    \( \frac{a^{11}}{b^2} = \frac{\binom{13}{6}}{\binom{13}{2}} \cdot \frac{a^7}{b^6} \implies a^4 \cdot b^4 = \frac{\binom{13}{6}}{\binom{13}{2}} \).

  • Step 4: Simplify binomial coefficients:

    \( \binom{13}{6} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{720} \).

    \( \binom{13}{2} = \frac{13 \cdot 12}{2} = 78 \).

    Substitute:

    \( a^4 \cdot b^4 = \frac{\binom{13}{6}}{\binom{13}{2}} = \frac{\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{720}}{78} = 22 \).

Final Answer: \( a^4 \cdot b^4 = 22 \).

Was this answer helpful?
0
0