22
44
11
33
Given:
The general term of the binomial expansion is:
\( T_{r+1} = \binom{13}{r} a^{13-r} \left(-\frac{1}{b}\right)^r x^{13 - 3r} \) \quad \((1)\)
\( 13 - 3r = 7 \implies r = 2 \).
Substitute \( r = 2 \) into (1):\( T_3 = \binom{13}{2} a^{11} \left(-\frac{1}{b}\right)^2 x^7 \).
Simplify:Coefficient of \( x^7 = \binom{13}{2} \frac{a^{11}}{b^2} \).
\( 13 - 3r = -5 \implies r = 6 \).
Substitute \( r = 6 \) into (1):\( T_7 = \binom{13}{6} a^7 \left(-\frac{1}{b}\right)^6 x^{-5} \).
Simplify:Coefficient of \( x^{-5} = \binom{13}{6} \frac{a^7}{b^6} \).
\( \binom{13}{2} \frac{a^{11}}{b^2} = \binom{13}{6} \frac{a^7}{b^6} \).
Simplify:\( \frac{a^{11}}{b^2} = \frac{\binom{13}{6}}{\binom{13}{2}} \cdot \frac{a^7}{b^6} \implies a^4 \cdot b^4 = \frac{\binom{13}{6}}{\binom{13}{2}} \).
\( \binom{13}{6} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{720} \).
\( \binom{13}{2} = \frac{13 \cdot 12}{2} = 78 \).
Substitute:\( a^4 \cdot b^4 = \frac{\binom{13}{6}}{\binom{13}{2}} = \frac{\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{720}}{78} = 22 \).
Final Answer: \( a^4 \cdot b^4 = 22 \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: