22
44
11
33
Given:
The general term of the binomial expansion is:
\( T_{r+1} = \binom{13}{r} a^{13-r} \left(-\frac{1}{b}\right)^r x^{13 - 3r} \) \quad \((1)\)
\( 13 - 3r = 7 \implies r = 2 \).
Substitute \( r = 2 \) into (1):\( T_3 = \binom{13}{2} a^{11} \left(-\frac{1}{b}\right)^2 x^7 \).
Simplify:Coefficient of \( x^7 = \binom{13}{2} \frac{a^{11}}{b^2} \).
\( 13 - 3r = -5 \implies r = 6 \).
Substitute \( r = 6 \) into (1):\( T_7 = \binom{13}{6} a^7 \left(-\frac{1}{b}\right)^6 x^{-5} \).
Simplify:Coefficient of \( x^{-5} = \binom{13}{6} \frac{a^7}{b^6} \).
\( \binom{13}{2} \frac{a^{11}}{b^2} = \binom{13}{6} \frac{a^7}{b^6} \).
Simplify:\( \frac{a^{11}}{b^2} = \frac{\binom{13}{6}}{\binom{13}{2}} \cdot \frac{a^7}{b^6} \implies a^4 \cdot b^4 = \frac{\binom{13}{6}}{\binom{13}{2}} \).
\( \binom{13}{6} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{720} \).
\( \binom{13}{2} = \frac{13 \cdot 12}{2} = 78 \).
Substitute:\( a^4 \cdot b^4 = \frac{\binom{13}{6}}{\binom{13}{2}} = \frac{\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}{720}}{78} = 22 \).
Final Answer: \( a^4 \cdot b^4 = 22 \).
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.