Given:
\( x^2 f(x) - x = 4 \int_0^x tf(t) \, dt \)
Step 1: Differentiate both sides with respect to x:
\( \frac{d}{dx} (x^2 f(x) - x) = \frac{d}{dx} \left( 4 \int_0^x tf(t) \, dt \right) \)
Using Leibniz rule:
\( x^2 f'(x) + 2x f(x) - 1 = 4x f(x) \)
Simplify:
\( x^2 f'(x) + 2x f(x) - 1 = 4x f(x) \)
\( x^2 f'(x) - 2x f(x) - 1 = 0 \)
Let \( y = f(x) \):
\( x^2 \frac{dy}{dx} - 2xy - 1 = 0 \)
Step 2: Rewrite the equation:
\( \frac{dy}{dx} - \frac{2}{x} y = \frac{1}{x^2} \)
This is a first-order linear differential equation. The integrating factor (I.F.) is:
\( \text{I.F.} = e^{\int -\frac{2}{x} \, dx} = e^{-2\ln x} = \frac{1}{x^2} \)
Step 3: Solve the differential equation:
\( \frac{y}{x^2} = \int \frac{1}{x^4} \, dx + C \)
\( \frac{y}{x^2} = -\frac{1}{3x^3} + C \)
Multiply through by \(x^2\):
\( y = -\frac{1}{3x} + Cx^2 \)
Step 4: Apply Initial Condition: Given \( f(1) = \frac{2}{3} \), substitute \( x = 1 \) and \( y = \frac{2}{3} \):
\( \frac{2}{3} = -\frac{1}{3} (1) + C(1^2) \)
\( \frac{2}{3} = -\frac{1}{3} + C \)
\( C = 1 \)
Thus:
\( y = -\frac{1}{3x} + x^2 \)
Step 5: Find \( f(3) \):
\( f(3) = -\frac{1}{3(3)} + 3^2 = -\frac{1}{9} + 9 = \frac{80}{9} \)
Step 6: Find \( 18 f(3) \):
\( 18 f(3) = 18 \times \frac{80}{9} = 160 \)
Final Answer: \( 18f(3) = 160 \).
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
| (B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
| (C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
| (D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: