Given:
\( x^2 f(x) - x = 4 \int_0^x tf(t) \, dt \)
Step 1: Differentiate both sides with respect to x:
\( \frac{d}{dx} (x^2 f(x) - x) = \frac{d}{dx} \left( 4 \int_0^x tf(t) \, dt \right) \)
Using Leibniz rule:
\( x^2 f'(x) + 2x f(x) - 1 = 4x f(x) \)
Simplify:
\( x^2 f'(x) + 2x f(x) - 1 = 4x f(x) \)
\( x^2 f'(x) - 2x f(x) - 1 = 0 \)
Let \( y = f(x) \):
\( x^2 \frac{dy}{dx} - 2xy - 1 = 0 \)
Step 2: Rewrite the equation:
\( \frac{dy}{dx} - \frac{2}{x} y = \frac{1}{x^2} \)
This is a first-order linear differential equation. The integrating factor (I.F.) is:
\( \text{I.F.} = e^{\int -\frac{2}{x} \, dx} = e^{-2\ln x} = \frac{1}{x^2} \)
Step 3: Solve the differential equation:
\( \frac{y}{x^2} = \int \frac{1}{x^4} \, dx + C \)
\( \frac{y}{x^2} = -\frac{1}{3x^3} + C \)
Multiply through by \(x^2\):
\( y = -\frac{1}{3x} + Cx^2 \)
Step 4: Apply Initial Condition: Given \( f(1) = \frac{2}{3} \), substitute \( x = 1 \) and \( y = \frac{2}{3} \):
\( \frac{2}{3} = -\frac{1}{3} (1) + C(1^2) \)
\( \frac{2}{3} = -\frac{1}{3} + C \)
\( C = 1 \)
Thus:
\( y = -\frac{1}{3x} + x^2 \)
Step 5: Find \( f(3) \):
\( f(3) = -\frac{1}{3(3)} + 3^2 = -\frac{1}{9} + 9 = \frac{80}{9} \)
Step 6: Find \( 18 f(3) \):
\( 18 f(3) = 18 \times \frac{80}{9} = 160 \)
Final Answer: \( 18f(3) = 160 \).
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.