Given: The circle is defined by the equation:
\( x^2 + y^2 = 9 \)
Step 1: Equation of Line AB or AP: The equation of line AB is:
\( \frac{x}{3} + \frac{y}{1} = 1 \)
\( x + 3y = 3 \Rightarrow x = 3 - 3y \)
Step 2: Intersection Point of Line AP and the Circle: Substitute \( x = 3 - 3y \) into \( x^2 + y^2 = 9 \):
\( (3 - 3y)^2 + y^2 = 9 \)
\( 9(1 + y^2 - 2y) + y^2 = 9 \)
\( 10y^2 - 18y = 0 \)
\( y(10y - 18) = 0 \Rightarrow y = \frac{9}{5} \)
Substitute \( y = \frac{9}{5} \) into \( x = 3 - 3y \):
\( x = 3 \left(1 - \frac{9}{5} \right) = 3 \left( -\frac{4}{5} \right) = -\frac{12}{5} \)
Thus, the intersection point is:
\( P \left( -\frac{12}{5}, \frac{9}{5} \right) \)
Step 3: Area of △AOP: The area of △AOP is given by:
Area \(= \frac{1}{2} \times \text{Base (OA)} \times \text{Height}\)
Here, Base (OA) = 3 and Height =\(\frac{9}{5}\):
Area \(= \frac{1}{2} \times 3 \times \frac{9}{5} = \frac{27}{10}\)
Step 4: Express the Area as \(\frac{m}{n}\):
Area \(= \frac{27}{10}, \quad m = 27, \quad n = 10\)
Step 5: Calculate \(m-n\):
\( m - n = 27 - 10 = 17 \)
Final Answer: \( m - n = 17 \), which corresponds to Option C.
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: