Given:
\( I = \int e^{\sin^2x} \sin^2x \cos x \, dx - \int e^{\sin^2x} \sin x \, dx \).
\( I = \cos x \int e^{\sin^2x} \sin^2x \, dx - (-\sin x) \int e^{\sin^2x} \sin^2x \, dx - \int e^{\sin^2x} \sin x \, dx \).
Substitute \( \sin^2x = t \), so \( 2\sin x \cos x \, dx = dt \):\( I = \int e^t \, dt + \int e^t \, dt - \int e^{\sin^2x} \sin x \, dx \).
\( I = e^{\sin^2x} \cos x + e^{\sin^2x} \sin x \, dx - e^{\sin^2x} \sin x \, dx \).
Simplify:\( I = e^{\sin^2x} \cos x + C \).
\( I(0) = e^{\sin^2(0)} \cos(0) + C \).
Simplify:\( 1 = 1 + C \implies C = 0 \).
Thus:\( I = e^{\sin^2x} \cos x \).
\( I\left(\frac{\pi}{3}\right) = e^{\sin^2\left(\frac{\pi}{3}\right)} \cos\left(\frac{\pi}{3}\right) \).
Substitute values:\( I\left(\frac{\pi}{3}\right) = e^{\left(\frac{\sqrt{3}}{2}\right)^2} \cdot \frac{1}{2} \).
Simplify:\( I\left(\frac{\pi}{3}\right) = e^{\frac{3}{4}} \cdot \frac{1}{2} = \frac{e^{\frac{3}{4}}}{2} \).
Final Answer: \( I\left(\frac{\pi}{3}\right) = \frac{e^{\frac{3}{4}}}{2} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 