Given:
\( I = \int e^{\sin^2x} \sin^2x \cos x \, dx - \int e^{\sin^2x} \sin x \, dx \).
\( I = \cos x \int e^{\sin^2x} \sin^2x \, dx - (-\sin x) \int e^{\sin^2x} \sin^2x \, dx - \int e^{\sin^2x} \sin x \, dx \).
Substitute \( \sin^2x = t \), so \( 2\sin x \cos x \, dx = dt \):\( I = \int e^t \, dt + \int e^t \, dt - \int e^{\sin^2x} \sin x \, dx \).
\( I = e^{\sin^2x} \cos x + e^{\sin^2x} \sin x \, dx - e^{\sin^2x} \sin x \, dx \).
Simplify:\( I = e^{\sin^2x} \cos x + C \).
\( I(0) = e^{\sin^2(0)} \cos(0) + C \).
Simplify:\( 1 = 1 + C \implies C = 0 \).
Thus:\( I = e^{\sin^2x} \cos x \).
\( I\left(\frac{\pi}{3}\right) = e^{\sin^2\left(\frac{\pi}{3}\right)} \cos\left(\frac{\pi}{3}\right) \).
Substitute values:\( I\left(\frac{\pi}{3}\right) = e^{\left(\frac{\sqrt{3}}{2}\right)^2} \cdot \frac{1}{2} \).
Simplify:\( I\left(\frac{\pi}{3}\right) = e^{\frac{3}{4}} \cdot \frac{1}{2} = \frac{e^{\frac{3}{4}}}{2} \).
Final Answer: \( I\left(\frac{\pi}{3}\right) = \frac{e^{\frac{3}{4}}}{2} \).
The number of solutions of the equation $ \cos 2\theta \cos \left( \frac{\theta}{2} \right) + \cos \left( \frac{5\theta}{2} \right) = 2 \cos^3 \left( \frac{5\theta}{2} \right) $ in the interval \(\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right ]\) is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: