Given:
\( z = x + iy \), \( \frac{2z - 3i}{2z + i} \) is purely imaginary. This implies:
\( \text{Re} \left( \frac{2z - 3i}{2z + i} \right) = 0 \)
\( \frac{2z - 3i}{2z + i} = \frac{2(x + iy) - 3i}{2(x + iy) + i} = \frac{2x + 2yi - 3i}{2x + i(2y + 1)} \)
\( \frac{(2x + i(2y - 3))(2x - i(2y + 1))}{(2x + i(2y + 1))(2x - i(2y + 1))} \)
\( (2x)^2 + (2y + 1)^2 = 4x^2 + (2y + 1)^2 \)
\( 4x^2 + i[(2y - 3)(2x) - (2y + 1)(2x)] \)
\( 4x^2 + (2y - 3)(2y + 1) \)
\( 4x^2 + (2y - 3)(2y + 1) = 0 \)
\( 4x^2 + [4y^2 + 2y - 6y - 3] = 0 \)
\( 4x^2 + 4y^2 - 4y - 3 = 0 \)
\( 4(-y^2)^2 + 4y^2 - 4y - 3 = 0 \)
\( 4y^4 + 4y^2 - 4y - 3 = 0 \)
Final Answer: The equation is:
\( 4y^4 + 4y^2 - 4y - 3 = 0 \)
Correct Option: (3)
∫ √(2x2 - 5x + 2) dx = ∫ (41/60) dx,
and
-1/2 > α > 0, then α = ?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.