Given:
\( z = x + iy \), \( \frac{2z - 3i}{2z + i} \) is purely imaginary. This implies:
\( \text{Re} \left( \frac{2z - 3i}{2z + i} \right) = 0 \)
\( \frac{2z - 3i}{2z + i} = \frac{2(x + iy) - 3i}{2(x + iy) + i} = \frac{2x + 2yi - 3i}{2x + i(2y + 1)} \)
\( \frac{(2x + i(2y - 3))(2x - i(2y + 1))}{(2x + i(2y + 1))(2x - i(2y + 1))} \)
\( (2x)^2 + (2y + 1)^2 = 4x^2 + (2y + 1)^2 \)
\( 4x^2 + i[(2y - 3)(2x) - (2y + 1)(2x)] \)
\( 4x^2 + (2y - 3)(2y + 1) \)
\( 4x^2 + (2y - 3)(2y + 1) = 0 \)
\( 4x^2 + [4y^2 + 2y - 6y - 3] = 0 \)
\( 4x^2 + 4y^2 - 4y - 3 = 0 \)
\( 4(-y^2)^2 + 4y^2 - 4y - 3 = 0 \)
\( 4y^4 + 4y^2 - 4y - 3 = 0 \)
Final Answer: The equation is:
\( 4y^4 + 4y^2 - 4y - 3 = 0 \)
Correct Option: (3)
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 