Given:
\( z = x + iy \), \( \frac{2z - 3i}{2z + i} \) is purely imaginary. This implies:
\( \text{Re} \left( \frac{2z - 3i}{2z + i} \right) = 0 \)
\( \frac{2z - 3i}{2z + i} = \frac{2(x + iy) - 3i}{2(x + iy) + i} = \frac{2x + 2yi - 3i}{2x + i(2y + 1)} \)
\( \frac{(2x + i(2y - 3))(2x - i(2y + 1))}{(2x + i(2y + 1))(2x - i(2y + 1))} \)
\( (2x)^2 + (2y + 1)^2 = 4x^2 + (2y + 1)^2 \)
\( 4x^2 + i[(2y - 3)(2x) - (2y + 1)(2x)] \)
\( 4x^2 + (2y - 3)(2y + 1) \)
\( 4x^2 + (2y - 3)(2y + 1) = 0 \)
\( 4x^2 + [4y^2 + 2y - 6y - 3] = 0 \)
\( 4x^2 + 4y^2 - 4y - 3 = 0 \)
\( 4(-y^2)^2 + 4y^2 - 4y - 3 = 0 \)
\( 4y^4 + 4y^2 - 4y - 3 = 0 \)
Final Answer: The equation is:
\( 4y^4 + 4y^2 - 4y - 3 = 0 \)
Correct Option: (3)
Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and \(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=