Prove that the Greatest Integer Function f: R \(\to\) R given by f(x) = [x], is neither one-once nor onto, where [x] denotes the greatest integer less than or equal to x.
Number of binary operations on the set {a, b} are
Consider a binary operation *on N defined as \(a*b=a^3+b^3.\)Choose the correct answer.
Let f: R-\(\{ - \frac {-4} {3} \}\)→R be a function defined as \(f (x) = \frac {4x} {3x + 4}.\) The inverse of f is map g: Range f→R- \(\{ \frac {- 4} {3}\}\) given by
If f : R→R be given by f(x)= \((3-x^3)^\frac {1} {3}\),,then fof(x) is
Determine whether each of the following relations are reflexive, symmetric, and transitive.
For the matrices A and B, verify that (AB)′= B'A' where(i)A=\(\begin{bmatrix}1\\-4\\3\end{bmatrix},\,B=\begin{bmatrix}-1&2&1\end{bmatrix}\)
(ii)A=\(\begin{bmatrix}0\\1\\2\end{bmatrix},\,B=\begin{bmatrix}1&5&7\end{bmatrix}\)
For the matrix A=\(\begin{bmatrix}1&5\\6&7\end{bmatrix}\),verify that I. (A+A') is a symmetric matrix II. (A-A') is a skew symmetric matrix
Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix}1&-1\\2&3\end{bmatrix}\)
If A'=\(\begin{bmatrix}-2&3\\1&2\end{bmatrix}\)and B=\(\begin{bmatrix}-1&0\\1&2\end{bmatrix}\),then find (A+2B)'
If A=\(\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix}\)and B=\(\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}\),then verify that (i)(A+B)'=A'+B' (ii)(A-B)'=A'-B'
Find the values of \(\sin(\frac{\pi}{3}-\sin^{-1}(-\frac{1}{2}))\) is equal to
Find the values of \(\tan\bigg(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2}\bigg)\)
Find the values of \(tan^{-1}(\tan\frac{3\pi}{4})\)
Find the values of \(\sin^{-1}(\sin^2\frac{\pi}{3})\)
If \(tan^{-1}\frac{x-1}{x-2}+tan^{-1}\frac{x+1}{x+2}=\frac{\pi}{4}\) then find the value of x
Find the value of \(\cot(tan^{-1}a+\cot^{-1}a)\)
Find the value of \(\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]\)
Write the function in the simplest form: \(tan^{-1}\frac{x}{\sqrt{a^2-x^2}},\mid x\mid<a\)