If f : R→R be given by f(x)= \((3-x^3)^\frac {1} {3}\),,then fof(x) is
\(\frac {1} {x^3}\)
\(x^3\)
X
\((3-x^3)\)
f: R → R is given as f(x)= \((3-x^3)^\frac {1} {3}\).
Therefore fof (x)= f ( f (x) )=\(f \Bigg (3-x^3)^\frac {1} {3} \Bigg )\)= \(\Bigg [ 3 - \bigg ( ( 3 - x^3) ^ \frac {1} {3} \bigg )^3 \Bigg ]^ \frac {1} {3}\)
= \([ 3 - (3 - x^3 ) ]^ \frac {1} {3} = (x^3)^ \frac {1} {3} = x\)
∴ fof (x)= x
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |
What is the Planning Process?