If A=\(\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix}\)and B=\(\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}\),then verify that
(i)(A+B)'=A'+B'
(ii)(A-B)'=A'-B'
We have: A'=\(\begin{bmatrix}-1&5&-2\\2&7&1\\3&9&1\end{bmatrix}\),B'=\(\begin{bmatrix}-4&1&1\\1&2&3\\-5&0&1\end{bmatrix}\)
(i)A+B= \(\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix}\)+\(\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}\)
=\(\begin{bmatrix}-5&3&-2\\6&9&9\\1&4&2\end{bmatrix}\)
therefore (A+B)'=\(\begin{bmatrix}-5&6&-1\\3&9&4\\-2&9&2\end{bmatrix}\)
A'+B'=\(\begin{bmatrix}-1&5&-2\\2&7&1\\3&9&1\end{bmatrix}\)+\(\begin{bmatrix}-4&1&1\\1&2&3\\-5&0&1\end{bmatrix}\)
Hence we verified that (A+B)'=A'+B'
(ii)A-B=\(\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix}\)-\(\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}\)
=\(\begin{bmatrix}3&1&8\\4&5&9\\-3&-2&0\end{bmatrix}\)
therefore (A-B)'=\(\begin{bmatrix}-3&4&-3\\1&5&-2\\8&9&0\end{bmatrix}\)
A'-B'=\(\begin{bmatrix}-1&5&-2\\2&7&1\\3&9&1\end{bmatrix}\)-\(\begin{bmatrix}-4&1&1\\1&2&3\\-5&0&1\end{bmatrix}\)
=\(\begin{bmatrix}-3&4&-3\\1&5&-2\\8&9&0\end{bmatrix}\)
Hence we verified that (A-B)'=A'-B'
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:

The matrix acquired by interchanging the rows and columns of the parent matrix is called the Transpose matrix. The transpose matrix is also defined as - “A Matrix which is formed by transposing all the rows of a given matrix into columns and vice-versa.”
The transpose matrix of A is represented by A’. It can be better understood by the given example:


Now, in Matrix A, the number of rows was 4 and the number of columns was 3 but, on taking the transpose of A we acquired A’ having 3 rows and 4 columns. Consequently, the vertical Matrix gets converted into Horizontal Matrix.
Hence, we can say if the matrix before transposing was a vertical matrix, it will be transposed to a horizontal matrix and vice-versa.
Read More: Transpose of a Matrix