Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix}1&-1\\2&3\end{bmatrix}\)
Let A= \(\begin{bmatrix}1&-1\\2&3\end{bmatrix}\) We know that A = IA
\(\therefore \begin{bmatrix}1&-1\\2&3\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}A\)
\(\Rightarrow\begin{bmatrix}1&-1\\0&5\end{bmatrix}=\begin{bmatrix}1&0\\-2&1\end{bmatrix}A\) (R2 \(\to\) R2-2R1)
\(\Rightarrow\begin{bmatrix}1&-1\\0&5\end{bmatrix}=\begin{bmatrix}1&0\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}A\) (R2 \(\to \frac{1}{5R_2}\))
\(\Rightarrow\begin{bmatrix}1&-1\\0&5\end{bmatrix}=\begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}A\) (R1 \(\to\) R1+R2)
so A-1= \(\begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In is an identity matrix of order n × n.
It can be observed that the determinant of the following matrices is non-zero.