Question:

Find the inverse of each of the matrices, if it exists. \(\begin{bmatrix}1&-1\\2&3\end{bmatrix}\)

Updated On: Aug 25, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A= \(\begin{bmatrix}1&-1\\2&3\end{bmatrix}\) We know that A = IA 
\(\therefore \begin{bmatrix}1&-1\\2&3\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}A\) 
\(\Rightarrow\begin{bmatrix}1&-1\\0&5\end{bmatrix}=\begin{bmatrix}1&0\\-2&1\end{bmatrix}A\)                      (R\(\to\) R2-2R1
\(\Rightarrow\begin{bmatrix}1&-1\\0&5\end{bmatrix}=\begin{bmatrix}1&0\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}A\)              (R\(\to \frac{1}{5R_2}\)
\(\Rightarrow\begin{bmatrix}1&-1\\0&5\end{bmatrix}=\begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}A\)     (R\(\to\) R1+R2

so A-1\(\begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{bmatrix}\)

Was this answer helpful?
0
0

Concepts Used:

Invertible matrices

A matrix for which matrix inversion operation exists, given that it satisfies the requisite conditions is known as an invertible matrix. Any given square matrix A of order n × n is called invertible if and only if there exists, another n × n square matrix B such that, AB = BA = In, where In  is an identity matrix of order n × n.

For example,

It can be observed that the determinant of the following matrices is non-zero.