For the matrix A=\(\begin{bmatrix}1&5\\6&7\end{bmatrix}\),verify that
I. (A+A') is a symmetric matrix
II. (A-A') is a skew symmetric matrix
A'= \(\begin{bmatrix}1&6\\5&7\end{bmatrix}\)
(i)A+A'=\(\begin{bmatrix}1&5\\6&7\end{bmatrix}\)+\(\begin{bmatrix}1&6\\5&7\end{bmatrix}\)
=\(\begin{bmatrix}2&11\\11&14\end{bmatrix}\)
therefore (A+A')'= \(\begin{bmatrix}2&11\\11&14\end{bmatrix}\)=A+A'
Hence,(A+A') is a symmetric matrix.
(ii)A-A'= \(\begin{bmatrix}1&5\\6&7\end{bmatrix}\)-\(\begin{bmatrix}1&6\\5&7\end{bmatrix}\)
=\(\begin{bmatrix}0&-1\\1&0\end{bmatrix}\)
(A-A')'=\(\begin{bmatrix}0&1\\-1&0\end{bmatrix}\)=-\(\begin{bmatrix}0&-1\\1&0\end{bmatrix}\)=-(A-A')
Hence,(A-A') is a skew-symmetric matrix.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]