(i) We have: A'=\(\begin{bmatrix}1&-1&5\\-1&2&1\\5&1&3\end{bmatrix}\)=A so A'=A
(i) We have: A'=\(\begin{bmatrix}0&-1&1\\1&0&-1\\-1&1&0\end{bmatrix}\)=-\(\begin{bmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{bmatrix}\)=-A
so A'=A Hence, A is a skew-symmetric matrix.
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)