(i) We have: A'=\(\begin{bmatrix}1&-1&5\\-1&2&1\\5&1&3\end{bmatrix}\)=A so A'=A
(i) We have: A'=\(\begin{bmatrix}0&-1&1\\1&0&-1\\-1&1&0\end{bmatrix}\)=-\(\begin{bmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{bmatrix}\)=-A
so A'=A Hence, A is a skew-symmetric matrix.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]