Find the values of \(\tan\bigg(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2}\bigg)\)
Let \(\sin^{-1}(\frac{3}{5})=x.\)
then, \(\sin x=\frac{3}{5}\)
=>cosx=√1-sin2x=4/5 =>secx=5/4,
therefore tanx=√sec2x-1=√25/16-1=3/4
x=tan-13/4
sin-13/5=tan-13/4.....(i)
Now,cot-13/2=tan-12/3....(ii)[tan-1 1/x=cot-1x]
Hence,tan(sin-13/5+cot-13/2)
=tan(tan-13/4+tan-12/3 [using(i) and(ii)]
=tan(tan-13/4+2/-3/4.2/3)
=tan(tan-117/6)=17/6
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying:
The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:
Tan−1x + Tan−1y = π + tan−1 (x+y/ 1-xy), if xy > 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = tan−1 (x+y/ 1-xy), if xy < 1
Tan−1x + Tan−1y = -π + tan−1 (x+y/ 1-xy), if xy > 1
= x, if x∈[−π/2, π/2]
= π−x, if x∈[π/2, 3π/2]
=−2π+x, if x∈[3π/2, 5π/2] And so on.
= −x, ∈[−π,0]
= x, ∈[0,π]
= 2π−x, ∈[π,2π]
=−2π+x, ∈[2π,3π]
= x, (−π/2, π/2)
= x−π, (π/2, 3π/2)
= x−2π, (3π/2, 5π/2)