Question:

Find the value of \(\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]\)

Updated On: Nov 30, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]\)
Let \(\sin^{-1}\frac{1}{2}=x.\)

Then, \(\sin x=\frac{1}{2}=\sin(\frac{\pi}{6})\)

\(\therefore\sin^{-1}\frac{1}{2}=\frac{\pi}{6}\)

\(\tan ^{-1}\bigg[2\cos\Big(2\sin^{-1}\frac{1}{2}\Big)\bigg]=\tan^{-1}\bigg[2\cos\Big(\frac{2x\pi}{6}\Big)\bigg]\)

=\(\tan^{-1}\bigg[2\cos\frac{\pi}{3}\bigg]=\tan^{-1}\bigg[2*\frac{1}{2}\bigg]\)

=\(\tan^{-1}1=\frac{\pi}{4}\)

Was this answer helpful?
1
0

Concepts Used:

Properties of Inverse Trigonometric Functions

The elementary properties of inverse trigonometric functions will help to solve problems. Here are a few important properties related to inverse trigonometric functions:

Property Set 1:

  • Sinβˆ’1(x) = cosecβˆ’1(1/x), x∈ [βˆ’1,1]βˆ’{0}
  • Cosβˆ’1(x) = secβˆ’1(1/x), x ∈ [βˆ’1,1]βˆ’{0}
  • Tanβˆ’1(x) = cotβˆ’1(1/x), if x > 0  (or)  cotβˆ’1(1/x) βˆ’Ο€, if x < 0
  • Cotβˆ’1(x) = tanβˆ’1(1/x), if x > 0 (or) tanβˆ’1(1/x) + Ο€, if x < 0

Property Set 2:

  • Sinβˆ’1(βˆ’x) = βˆ’Sinβˆ’1(x)
  • Tanβˆ’1(βˆ’x) = βˆ’Tanβˆ’1(x)
  • Cosβˆ’1(βˆ’x) = Ο€ βˆ’ Cosβˆ’1(x)
  • Cosecβˆ’1(βˆ’x) = βˆ’ Cosecβˆ’1(x)
  • Secβˆ’1(βˆ’x) = Ο€ βˆ’ Secβˆ’1(x)
  • Cotβˆ’1(βˆ’x) = Ο€ βˆ’ Cotβˆ’1(x)

Property Set 3:

  • Sinβˆ’1(1/x) = cosecβˆ’1x, xβ‰₯1 or xβ‰€βˆ’1
  • Cosβˆ’1(1/x) = secβˆ’1x, xβ‰₯1 or xβ‰€βˆ’1
  • Tanβˆ’1(1/x) = βˆ’Ο€ + cotβˆ’1(x)

Property Set 4:

  • Sinβˆ’1(cos ΞΈ) = Ο€/2 βˆ’ ΞΈ, if θ∈[0,Ο€]
  • Cosβˆ’1(sin ΞΈ) = Ο€/2 βˆ’ ΞΈ, if θ∈[βˆ’Ο€/2, Ο€/2]
  • Tanβˆ’1(cot ΞΈ) = Ο€/2 βˆ’ ΞΈ, θ∈[0,Ο€]
  • Cotβˆ’1(tan ΞΈ) = Ο€/2 βˆ’ ΞΈ, θ∈[βˆ’Ο€/2, Ο€/2]
  • Secβˆ’1(cosec ΞΈ) = Ο€/2 βˆ’ ΞΈ, θ∈[βˆ’Ο€/2, 0]βˆͺ[0, Ο€/2]
  • Cosecβˆ’1(sec ΞΈ) = Ο€/2 βˆ’ ΞΈ, θ∈[0,Ο€]βˆ’{Ο€/2}
  • Sinβˆ’1(x) = cosβˆ’1[√(1βˆ’x2)], 0≀x≀1 = βˆ’cosβˆ’1[√(1βˆ’x2)], βˆ’1≀x<0

Property Set 5:

  • Sinβˆ’1x + Cosβˆ’1x = Ο€/2
  • Tanβˆ’1x + Cotβˆ’1(x) = Ο€/2
  • Secβˆ’1x + Cosecβˆ’1x = Ο€/2

Property Set 6:

  • If x, y > 0

Tanβˆ’1x + Tanβˆ’1y = Ο€ + tanβˆ’1 (x+y/ 1-xy), if xy > 1

Tanβˆ’1x + Tanβˆ’1y = tanβˆ’1 (x+y/ 1-xy), if xy < 1

  • If x, y < 0

Tanβˆ’1x + Tanβˆ’1y = tanβˆ’1 (x+y/ 1-xy), if xy < 1

Tanβˆ’1x + Tanβˆ’1y = -Ο€ + tanβˆ’1 (x+y/ 1-xy), if xy > 1

Property Set 7:

  • sinβˆ’1(x) + sinβˆ’1(y) = sinβˆ’1[x√(1βˆ’y2)+ y√(1βˆ’x2)]
  • cosβˆ’1x + cosβˆ’1y = cosβˆ’1[xyβˆ’βˆš(1βˆ’x2)√(1βˆ’y2)]

Property Set 8:

  • sinβˆ’1(sin x) = βˆ’Ο€βˆ’Ο€, if x∈[βˆ’3Ο€/2, βˆ’Ο€/2]

= x, if x∈[βˆ’Ο€/2, Ο€/2]

= Ο€βˆ’x, if x∈[Ο€/2, 3Ο€/2]

=βˆ’2Ο€+x, if x∈[3Ο€/2, 5Ο€/2] And so on.

  • cosβˆ’1(cos x) = 2Ο€+x, if x∈[βˆ’2Ο€,βˆ’Ο€]

= βˆ’x, ∈[βˆ’Ο€,0]

= x, ∈[0,Ο€]

= 2Ο€βˆ’x, ∈[Ο€,2Ο€]

=βˆ’2Ο€+x, ∈[2Ο€,3Ο€]

  • tanβˆ’1(tan x) = Ο€+x, x∈(βˆ’3Ο€/2, βˆ’Ο€/2)

= x, (βˆ’Ο€/2, Ο€/2)

= xβˆ’Ο€, (Ο€/2, 3Ο€/2)

= xβˆ’2Ο€, (3Ο€/2, 5Ο€/2)

Property Set 9: