For the matrices A and B, verify that (AB)′= B'A' where
(i)A=\(\begin{bmatrix}1\\-4\\3\end{bmatrix},\,B=\begin{bmatrix}-1&2&1\end{bmatrix}\)
(ii)A=\(\begin{bmatrix}0\\1\\2\end{bmatrix},\,B=\begin{bmatrix}1&5&7\end{bmatrix}\)
(i)AB=\(\begin{bmatrix}1\\-4\\3\end{bmatrix}\begin{bmatrix}-1&2&1\end{bmatrix}\)=\(\begin{bmatrix}-1&2&1\\4&-8&-4\\-3&6&3\end{bmatrix}\)
therefore (AB)'=\(\begin{bmatrix}-1&4&-3\\2&-8&6\\1&-4&3\end{bmatrix}\)
Now A'=\(\begin{bmatrix}1&-4&3\end{bmatrix}\),B'=\(\begin{bmatrix}-1\\2\\1\end{bmatrix}\)
Therefore B'A'=\(\begin{bmatrix}-1\\2\\1\end{bmatrix}=\begin{bmatrix}-1&4&-3\\2&-8&6\\1&-4&3\end{bmatrix}\)
Hence we verified that:(AB)′= B'A'
(ii)AB=\(\begin{bmatrix}0\\1\\2\end{bmatrix}\begin{bmatrix}1&5&7\end{bmatrix}\)=\(\begin{bmatrix}0&0&0\\1&5&7\\2&10&14\end{bmatrix}\)
so (AB)'=\(\begin{bmatrix}0&1&2\\0&5&10\\0&7&14\end{bmatrix}\)
Now A'=\(\begin{bmatrix}0&1&2\end{bmatrix}\),B'=\(\begin{bmatrix}1\\5\\7\end{bmatrix}\)
so B'A'=\(\begin{bmatrix}1\\5\\7\end{bmatrix}\)\(\begin{bmatrix}0&1&2\end{bmatrix}\)=\(\begin{bmatrix}0&1&2\\0&5&10\\0&7&14\end{bmatrix}\)
Hence we verified that(AB)′= B'A'
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Reactant ‘A’ underwent a decomposition reaction. The concentration of ‘A’ was measured periodically and recorded in the table given below:
Based on the above data, predict the order of the reaction and write the expression for the rate law.
Balance Sheet of Atharv and Anmol as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Capitals: | Fixed Assets | 14,00,000 | |
| Atharv | 8,00,000 | Stock | 4,90,000 |
| Anmol | 4,00,000 | Debtors | 5,60,000 |
| General Reserve | 3,50,000 | Cash | 10,000 |
| Creditors | 9,10,000 | ||
| Total | 24,60,000 | Total | 24,60,000 |
The matrix acquired by interchanging the rows and columns of the parent matrix is called the Transpose matrix. The transpose matrix is also defined as - “A Matrix which is formed by transposing all the rows of a given matrix into columns and vice-versa.”
The transpose matrix of A is represented by A’. It can be better understood by the given example:


Now, in Matrix A, the number of rows was 4 and the number of columns was 3 but, on taking the transpose of A we acquired A’ having 3 rows and 4 columns. Consequently, the vertical Matrix gets converted into Horizontal Matrix.
Hence, we can say if the matrix before transposing was a vertical matrix, it will be transposed to a horizontal matrix and vice-versa.
Read More: Transpose of a Matrix