Let R = {(1, 2), (2, 3), (3, 3)}} be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is:
Let \( f(x) = \log x \) and \[ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} \] Then the domain of \( f \circ g \) is:
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
The Maximum number of RBr producing 2-methylbutane by above sequence of reaction
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
Match List-I with List-IIChoose the correct answer from the options given below :
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $