Step 1: The number of integral terms in the binomial expansion \( \left( \sqrt{7} + \sqrt{11} \right)^n \) can be found by considering the terms of the form \( \binom{n}{k} \sqrt{7}^{n-k} \sqrt{11}^k \). For an integral term, the exponents of both square roots must be even.
Step 2: The number of integral terms is the number of valid values of \( k \) such that both \( n-k \) and \( k \) are even. This means \( k \) must range from 0 to \( n \), and \( k \) must be even.
Step 3: Solve the equation \( \frac{n}{2} + 1 = 183 \), which gives \( n = 2184 \). Thus, the correct answer is (3).
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: