Step 1: The number of integral terms in the binomial expansion \( \left( \sqrt{7} + \sqrt{11} \right)^n \) can be found by considering the terms of the form \( \binom{n}{k} \sqrt{7}^{n-k} \sqrt{11}^k \). For an integral term, the exponents of both square roots must be even.
Step 2: The number of integral terms is the number of valid values of \( k \) such that both \( n-k \) and \( k \) are even. This means \( k \) must range from 0 to \( n \), and \( k \) must be even.
Step 3: Solve the equation \( \frac{n}{2} + 1 = 183 \), which gives \( n = 2184 \). Thus, the correct answer is (3).
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).