Step 1: Simplify the expression for f(x). Given \( f(x) = \frac{2^{x+2} + 16}{2^{2x+1} + 2^{x+4} + 32} \).
We can rewrite this as: \[ f(x) = \frac{2^2 \cdot 2^x + 16}{2 \cdot (2^x)^2 + 2^4 \cdot 2^x + 32} = \frac{4 \cdot 2^x + 16}{2 \cdot (2^x)^2 + 16 \cdot 2^x + 32}. \] Factoring out constants, we get: \[ f(x) = \frac{4(2^x + 4)}{2((2^x)^2 + 8 \cdot 2^x + 16)} = \frac{2(2^x + 4)}{(2^x + 4)^2} = \frac{2}{2^x + 4}. \] Step 2: Determine the pairing property. Let's examine \( f(a) + f(4-a) \): \[ f(a) + f(4-a) = \frac{2}{2^a + 4} + \frac{2}{2^{4-a} + 4} = \frac{2}{2^a + 4} + \frac{2}{\frac{16}{2^a} + 4}. \] Multiplying the numerator and denominator of the second term by \( 2^a \), we have: \[ f(a) + f(4-a) = \frac{2}{2^a + 4} + \frac{2 \cdot 2^a}{16 + 4 \cdot 2^a} = \frac{2}{2^a + 4} + \frac{2^a}{8 + 2 \cdot 2^a} = \frac{2}{2^a + 4} + \frac{2^a}{2(4 + 2^a)}. \] Combining the fractions: \[ f(a) + f(4-a) = \frac{4 + 2^a}{2(2^a + 4)} = \frac{1}{2}. \] Step 3: Evaluate the sum.
We need to calculate \( 8 \left( \sum_{k=1}^{59} f\left(\frac{k}{15}\right) \right) \).
We pair terms of the form \( \frac{k}{15} \) and \( 4 - \frac{k}{15} \). Notice that \( 4 - \frac{k}{15} = \frac{60-k}{15} \).
We can rewrite the sum as: \[ \sum_{k=1}^{59} f\left(\frac{k}{15}\right) = \sum_{k=1}^{29} \left[ f\left(\frac{k}{15}\right) + f\left(\frac{60-k}{15}\right) \right] + f\left(\frac{30}{15}\right) = \sum_{k=1}^{29} \left[ f\left(\frac{k}{15}\right) + f\left(4 - \frac{k}{15}\right) \right] + f(2). \] Using the result from Step 2: \[ \sum_{k=1}^{59} f\left(\frac{k}{15}\right) = \sum_{k=1}^{29} \frac{1}{2} + f(2) = 29 \cdot \frac{1}{2} + \frac{2}{2^2 + 4} = \frac{29}{2} + \frac{2}{8} = \frac{29}{2} + \frac{1}{4} = \frac{58+1}{4} = \frac{59}{4}. \] Step 4: Calculate the final result. Finally, \[ 8 \left( \sum_{k=1}^{59} f\left(\frac{k}{15}\right) \right) = 8 \cdot \frac{59}{4} = 2 \cdot 59 = 118. \] Therefore, the answer is 118.