We are given that:
Let \( [x] \) denote the greatest integer less than or equal to \( x \). Then the domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
The function involves the inverse secant, \( \sec^{-1}(y) \), which is defined for \( |y| \geq 1 \). Therefore, for \( f(x) = \sec^{-1}(2[x] + 1) \), we need to ensure that the expression inside the inverse secant is valid. \[ |2[x] + 1| \geq 1 \] This inequality must hold for the domain of the function.
Consider the inequality \( |2[x] + 1| \geq 1 \): \[ 2[x] + 1 \geq 1 \quad \text{or} \quad 2[x] + 1 \leq -1 \] Solving each case separately: - Case 1: \( 2[x] + 1 \geq 1 \) gives \( 2[x] \geq 0 \) or \( [x] \geq 0 \). - Case 2: \( 2[x] + 1 \leq -1 \) gives \( 2[x] \leq -2 \) or \( [x] \leq -1 \). Therefore, the solution is \( [x] \geq 0 \) or \( [x] \leq -1 \).
The domain of \( f(x) \) is all real values of \( x \) for which the greatest integer \( [x] \) satisfies one of the conditions above: \( [x] \geq 0 \) or \( [x] \leq -1 \). This means the function is defined for all real numbers except those between 0 and 1, exclusive.
The domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
\( (-\infty, -\infty) \)
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: