We are given that:
Let \( [x] \) denote the greatest integer less than or equal to \( x \). Then the domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
The function involves the inverse secant, \( \sec^{-1}(y) \), which is defined for \( |y| \geq 1 \). Therefore, for \( f(x) = \sec^{-1}(2[x] + 1) \), we need to ensure that the expression inside the inverse secant is valid. \[ |2[x] + 1| \geq 1 \] This inequality must hold for the domain of the function.
Consider the inequality \( |2[x] + 1| \geq 1 \): \[ 2[x] + 1 \geq 1 \quad \text{or} \quad 2[x] + 1 \leq -1 \] Solving each case separately: - Case 1: \( 2[x] + 1 \geq 1 \) gives \( 2[x] \geq 0 \) or \( [x] \geq 0 \). - Case 2: \( 2[x] + 1 \leq -1 \) gives \( 2[x] \leq -2 \) or \( [x] \leq -1 \). Therefore, the solution is \( [x] \geq 0 \) or \( [x] \leq -1 \).
The domain of \( f(x) \) is all real values of \( x \) for which the greatest integer \( [x] \) satisfies one of the conditions above: \( [x] \geq 0 \) or \( [x] \leq -1 \). This means the function is defined for all real numbers except those between 0 and 1, exclusive.
The domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
\( (-\infty, -\infty) \)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
