We are given that:
Let \( [x] \) denote the greatest integer less than or equal to \( x \). Then the domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
The function involves the inverse secant, \( \sec^{-1}(y) \), which is defined for \( |y| \geq 1 \). Therefore, for \( f(x) = \sec^{-1}(2[x] + 1) \), we need to ensure that the expression inside the inverse secant is valid. \[ |2[x] + 1| \geq 1 \] This inequality must hold for the domain of the function.
Consider the inequality \( |2[x] + 1| \geq 1 \): \[ 2[x] + 1 \geq 1 \quad \text{or} \quad 2[x] + 1 \leq -1 \] Solving each case separately: - Case 1: \( 2[x] + 1 \geq 1 \) gives \( 2[x] \geq 0 \) or \( [x] \geq 0 \). - Case 2: \( 2[x] + 1 \leq -1 \) gives \( 2[x] \leq -2 \) or \( [x] \leq -1 \). Therefore, the solution is \( [x] \geq 0 \) or \( [x] \leq -1 \).
The domain of \( f(x) \) is all real values of \( x \) for which the greatest integer \( [x] \) satisfies one of the conditions above: \( [x] \geq 0 \) or \( [x] \leq -1 \). This means the function is defined for all real numbers except those between 0 and 1, exclusive.
The domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is:
\( (-\infty, -\infty) \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).