The centroid \( z_0 \) of a triangle with vertices \( z_1, z_2, z_3 \) is given by:
\[
z_0 = \frac{z_1 + z_2 + z_3}{3}
\]
From this, we have:
\[
z_1 + z_2 + z_3 = 3z_0
\]
We need to find the value of \( \sum_{k=1}^{3} (z_k - z_0)^2 \), which is:
\[
(z_1 - z_0)^2 + (z_2 - z_0)^2 + (z_3 - z_0)^2
\]
Expanding the terms:
\[
(z_1^2 - 2z_1 z_0 + z_0^2) + (z_2^2 - 2z_2 z_0 + z_0^2) + (z_3^2 - 2z_3 z_0 + z_0^2)
\]
\[
= (z_1^2 + z_2^2 + z_3^2) - 2z_0(z_1 + z_2 + z_3) + 3z_0^2
\]
Substitute \( z_1 + z_2 + z_3 = 3z_0 \) into the expression:
\[
= (z_1^2 + z_2^2 + z_3^2) - 2z_0(3z_0) + 3z_0^2
\]
\[
= z_1^2 + z_2^2 + z_3^2 - 6z_0^2 + 3z_0^2
\]
\[
= z_1^2 + z_2^2 + z_3^2 - 3z_0^2
\]
Now, consider \( (z_1 + z_2 + z_3)^2 \):
\[
(z_1 + z_2 + z_3)^2 = z_1^2 + z_2^2 + z_3^2 + 2(z_1 z_2 + z_2 z_3 + z_3 z_1)
\]
Also, \( (z_1 + z_2 + z_3)^2 = (3z_0)^2 = 9z_0^2 \).
So, \( z_1^2 + z_2^2 + z_3^2 + 2(z_1 z_2 + z_2 z_3 + z_3 z_1) = 9z_0^2 \).
For an equilateral triangle with centroid \( z_0 \), we also have the property:
\[
z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1
\]
Substituting this into the previous equation:
\[
(z_1^2 + z_2^2 + z_3^2) + 2(z_1^2 + z_2^2 + z_3^2) = 9z_0^2
\]
\[
3(z_1^2 + z_2^2 + z_3^2) = 9z_0^2
\]
\[
z_1^2 + z_2^2 + z_3^2 = 3z_0^2
\]
Now substitute this back into the expression for the sum:
\[
\sum_{k=1}^{3} (z_k - z_0)^2 = z_1^2 + z_2^2 + z_3^2 - 3z_0^2 = 3z_0^2 - 3z_0^2 = 0
\]