Given:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \]
Multiply both sides by \( z - 2 + i \):
\[ z + 3i = (2 + 3i)(z - 2 + i) \]
Now expand the right-hand side:
\[ \begin{align*} z + 3i &= (2 + 3i)(z - 2 + i) \\ &= 2(z - 2 + i) + 3i(z - 2 + i) \\ &= 2z - 4 + 2i + 3iz - 6i + 3i^2 \\ &= 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \\ &= 2z + 3iz - 7 - 4i \end{align*} \]
Bring all terms to one side:
\[ z + 3i - (2z + 3iz - 7 - 4i) = 0 \Rightarrow -z - 3iz + 10i + 7 = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Now solve for \( z \):
\[ z = \frac{7 + 7i}{1 + 3i} = \frac{(7 + 7i)(1 - 3i)}{(1 + 3i)(1 - 3i)} = \frac{7(1 - 3i) + 7i(1 - 3i)}{1 + 9} \]
\[ = \frac{7 - 21i + 7i - 21i^2}{10} = \frac{28 - 14i}{10} = \frac{14 - 7i}{5} \]
So one value of \( z \) is:
\[ z = \frac{14 - 7i}{5} \]
Now observe that the original equation:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \Rightarrow z + 3i = (2 + 3i)(z - 2 + i) \]
This can be written as a quadratic in \( z \). Let’s proceed:
Let’s expand again:
\[ z + 3i = (2 + 3i)(z - 2 + i) = (2 + 3i)(z) + (2 + 3i)(-2 + i) \]
\[ = 2z + 3iz + (-4 + 2i - 6i + 3i^2) = 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \]
\[ = 2z + 3iz - 7 - 4i \]
Now bring all terms to one side again:
\[ z + 3i - 2z - 3iz + 7 + 4i = 0 \Rightarrow -z - 3iz + 7 + 7i = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Multiply both sides by \( 1 + 3i \) to form a quadratic:
\[ z(1 + 3i) = 7 + 7i \Rightarrow z^2 + 3i z = z(2 + 3i) - 7 - 4i \Rightarrow z^2 - (2 + 3i)z + 7 + 7i = 0 \]
So the quadratic equation is:
\[ z^2 - (2 + 3i)z + (7 + 7i) = 0 \]
Let the roots be \( z_1 \) and \( z_2 \). Then:
\[ z_1 + z_2 = 2 + 3i, \quad z_1 z_2 = 7 + 7i \]
Now compute:
\[ \begin{align*} z_1^2 + z_2^2 &= (z_1 + z_2)^2 - 2z_1 z_2 \\ &= (2 + 3i)^2 - 2(7 + 7i) \\ &= 4 + 12i - 9 - 14 - 14i \\ &= -19 - 2i \end{align*} \]
\[ z_1^2 + z_2^2 = -19 - 2i \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).