Given:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \]
Multiply both sides by \( z - 2 + i \):
\[ z + 3i = (2 + 3i)(z - 2 + i) \]
Now expand the right-hand side:
\[ \begin{align*} z + 3i &= (2 + 3i)(z - 2 + i) \\ &= 2(z - 2 + i) + 3i(z - 2 + i) \\ &= 2z - 4 + 2i + 3iz - 6i + 3i^2 \\ &= 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \\ &= 2z + 3iz - 7 - 4i \end{align*} \]
Bring all terms to one side:
\[ z + 3i - (2z + 3iz - 7 - 4i) = 0 \Rightarrow -z - 3iz + 10i + 7 = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Now solve for \( z \):
\[ z = \frac{7 + 7i}{1 + 3i} = \frac{(7 + 7i)(1 - 3i)}{(1 + 3i)(1 - 3i)} = \frac{7(1 - 3i) + 7i(1 - 3i)}{1 + 9} \]
\[ = \frac{7 - 21i + 7i - 21i^2}{10} = \frac{28 - 14i}{10} = \frac{14 - 7i}{5} \]
So one value of \( z \) is:
\[ z = \frac{14 - 7i}{5} \]
Now observe that the original equation:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \Rightarrow z + 3i = (2 + 3i)(z - 2 + i) \]
This can be written as a quadratic in \( z \). Let’s proceed:
Let’s expand again:
\[ z + 3i = (2 + 3i)(z - 2 + i) = (2 + 3i)(z) + (2 + 3i)(-2 + i) \]
\[ = 2z + 3iz + (-4 + 2i - 6i + 3i^2) = 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \]
\[ = 2z + 3iz - 7 - 4i \]
Now bring all terms to one side again:
\[ z + 3i - 2z - 3iz + 7 + 4i = 0 \Rightarrow -z - 3iz + 7 + 7i = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Multiply both sides by \( 1 + 3i \) to form a quadratic:
\[ z(1 + 3i) = 7 + 7i \Rightarrow z^2 + 3i z = z(2 + 3i) - 7 - 4i \Rightarrow z^2 - (2 + 3i)z + 7 + 7i = 0 \]
So the quadratic equation is:
\[ z^2 - (2 + 3i)z + (7 + 7i) = 0 \]
Let the roots be \( z_1 \) and \( z_2 \). Then:
\[ z_1 + z_2 = 2 + 3i, \quad z_1 z_2 = 7 + 7i \]
Now compute:
\[ \begin{align*} z_1^2 + z_2^2 &= (z_1 + z_2)^2 - 2z_1 z_2 \\ &= (2 + 3i)^2 - 2(7 + 7i) \\ &= 4 + 12i - 9 - 14 - 14i \\ &= -19 - 2i \end{align*} \]
\[ z_1^2 + z_2^2 = -19 - 2i \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: