Given:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \]
Multiply both sides by \( z - 2 + i \):
\[ z + 3i = (2 + 3i)(z - 2 + i) \]
Now expand the right-hand side:
\[ \begin{align*} z + 3i &= (2 + 3i)(z - 2 + i) \\ &= 2(z - 2 + i) + 3i(z - 2 + i) \\ &= 2z - 4 + 2i + 3iz - 6i + 3i^2 \\ &= 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \\ &= 2z + 3iz - 7 - 4i \end{align*} \]
Bring all terms to one side:
\[ z + 3i - (2z + 3iz - 7 - 4i) = 0 \Rightarrow -z - 3iz + 10i + 7 = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Now solve for \( z \):
\[ z = \frac{7 + 7i}{1 + 3i} = \frac{(7 + 7i)(1 - 3i)}{(1 + 3i)(1 - 3i)} = \frac{7(1 - 3i) + 7i(1 - 3i)}{1 + 9} \]
\[ = \frac{7 - 21i + 7i - 21i^2}{10} = \frac{28 - 14i}{10} = \frac{14 - 7i}{5} \]
So one value of \( z \) is:
\[ z = \frac{14 - 7i}{5} \]
Now observe that the original equation:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \Rightarrow z + 3i = (2 + 3i)(z - 2 + i) \]
This can be written as a quadratic in \( z \). Let’s proceed:
Let’s expand again:
\[ z + 3i = (2 + 3i)(z - 2 + i) = (2 + 3i)(z) + (2 + 3i)(-2 + i) \]
\[ = 2z + 3iz + (-4 + 2i - 6i + 3i^2) = 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \]
\[ = 2z + 3iz - 7 - 4i \]
Now bring all terms to one side again:
\[ z + 3i - 2z - 3iz + 7 + 4i = 0 \Rightarrow -z - 3iz + 7 + 7i = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Multiply both sides by \( 1 + 3i \) to form a quadratic:
\[ z(1 + 3i) = 7 + 7i \Rightarrow z^2 + 3i z = z(2 + 3i) - 7 - 4i \Rightarrow z^2 - (2 + 3i)z + 7 + 7i = 0 \]
So the quadratic equation is:
\[ z^2 - (2 + 3i)z + (7 + 7i) = 0 \]
Let the roots be \( z_1 \) and \( z_2 \). Then:
\[ z_1 + z_2 = 2 + 3i, \quad z_1 z_2 = 7 + 7i \]
Now compute:
\[ \begin{align*} z_1^2 + z_2^2 &= (z_1 + z_2)^2 - 2z_1 z_2 \\ &= (2 + 3i)^2 - 2(7 + 7i) \\ &= 4 + 12i - 9 - 14 - 14i \\ &= -19 - 2i \end{align*} \]
\[ z_1^2 + z_2^2 = -19 - 2i \]
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to