Given:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \]
Multiply both sides by \( z - 2 + i \):
\[ z + 3i = (2 + 3i)(z - 2 + i) \]
Now expand the right-hand side:
\[ \begin{align*} z + 3i &= (2 + 3i)(z - 2 + i) \\ &= 2(z - 2 + i) + 3i(z - 2 + i) \\ &= 2z - 4 + 2i + 3iz - 6i + 3i^2 \\ &= 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \\ &= 2z + 3iz - 7 - 4i \end{align*} \]
Bring all terms to one side:
\[ z + 3i - (2z + 3iz - 7 - 4i) = 0 \Rightarrow -z - 3iz + 10i + 7 = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Now solve for \( z \):
\[ z = \frac{7 + 7i}{1 + 3i} = \frac{(7 + 7i)(1 - 3i)}{(1 + 3i)(1 - 3i)} = \frac{7(1 - 3i) + 7i(1 - 3i)}{1 + 9} \]
\[ = \frac{7 - 21i + 7i - 21i^2}{10} = \frac{28 - 14i}{10} = \frac{14 - 7i}{5} \]
So one value of \( z \) is:
\[ z = \frac{14 - 7i}{5} \]
Now observe that the original equation:
\[ \frac{z + 3i}{z - 2 + i} = 2 + 3i \Rightarrow z + 3i = (2 + 3i)(z - 2 + i) \]
This can be written as a quadratic in \( z \). Let’s proceed:
Let’s expand again:
\[ z + 3i = (2 + 3i)(z - 2 + i) = (2 + 3i)(z) + (2 + 3i)(-2 + i) \]
\[ = 2z + 3iz + (-4 + 2i - 6i + 3i^2) = 2z + 3iz - 4 - 4i - 3 \quad (\text{since } i^2 = -1) \]
\[ = 2z + 3iz - 7 - 4i \]
Now bring all terms to one side again:
\[ z + 3i - 2z - 3iz + 7 + 4i = 0 \Rightarrow -z - 3iz + 7 + 7i = 0 \Rightarrow z(1 + 3i) = 7 + 7i \]
Multiply both sides by \( 1 + 3i \) to form a quadratic:
\[ z(1 + 3i) = 7 + 7i \Rightarrow z^2 + 3i z = z(2 + 3i) - 7 - 4i \Rightarrow z^2 - (2 + 3i)z + 7 + 7i = 0 \]
So the quadratic equation is:
\[ z^2 - (2 + 3i)z + (7 + 7i) = 0 \]
Let the roots be \( z_1 \) and \( z_2 \). Then:
\[ z_1 + z_2 = 2 + 3i, \quad z_1 z_2 = 7 + 7i \]
Now compute:
\[ \begin{align*} z_1^2 + z_2^2 &= (z_1 + z_2)^2 - 2z_1 z_2 \\ &= (2 + 3i)^2 - 2(7 + 7i) \\ &= 4 + 12i - 9 - 14 - 14i \\ &= -19 - 2i \end{align*} \]
\[ z_1^2 + z_2^2 = -19 - 2i \]
To determine the sum of all possible values of \( z \) given the equation \( \frac{z+3i}{z-2+i} = 2+3i \), let's solve for \( z \) step-by-step.
First, clear the complex fraction by multiplying both sides by the denominator \( z - 2 + i \):
\[(z + 3i) = (2 + 3i)(z - 2 + i)\]Expand the right side using the distributive property:
\[(2 + 3i)(z - 2 + i) = (2 + 3i)z - (2 + 3i) \times 2 + (2 + 3i) \times i\]Calculate each term:
\[(2 + 3i)z = 2z + 3iz\]\[(2 + 3i) \times 2 = 4 + 6i\]\[(2 + 3i) \times i = 2i + 3i^2\]Equate this to the left side \( z + 3i \):
\[z + 3i = 2z + 3iz - 7 - 4i\]Rearrange the equation to solve for \( z \):
\[z - 2z - 3iz = -7 - 4i - 3i\]Combine and factor out terms on the left side:
\[-z(1 + 3i) = -7 - 7i\]Solve for \( z \) by dividing both sides by \(-(1 + 3i)\):
\[z = \frac{-7 - 7i}{-1 - 3i}\]To simplify, multiply the numerator and denominator by the conjugate of the denominator:
\[\frac{-7 - 7i}{-1 - 3i} \cdot \frac{-1 + 3i}{-1 + 3i}\]Compute the denominator:
\[(-1)^2 - (3i)^2 = 1 - 9(-1) = 1 + 9 = 10\]Compute the numerator:
\[(-7)(-1) + (-7)(3i) - (7i)(-1) - (7i)(3i)\]Now, simplify \( z \):
\[z = \frac{28 + 14i}{10} = \frac{28}{10} + \frac{14i}{10} = 2.8 + 1.4i\]Thus, the sum of the possible value of \( z \) is:
\[-19 - 2i\]
Hence, the sum of all possible values of \( z \) is:
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]