\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
Two rods of equal length \(60\,\text{cm}\) each are joined together end to end. The coefficients of linear expansion of the rods are \(24\times10^{-6}\^{\circ}\text{C}^{-1}\) and \(1.2\times10^{-5}\^{\circ}\text{C}^{-1}\). Their initial temperature is \(30^{\circ}\text{C}\), which is increased to \(100^{\circ}\text{C}\). Find the final length of the combination (in cm).
