We are given the conditions:
\[
|z| = 1 \quad \text{and} \quad \left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1.
\]
Since \( |z| = 1 \), we know that \( z \) lies on the unit circle, so we can write:
\[
z = e^{i\theta}, \quad \overline{z} = e^{-i\theta}.
\]
Substituting into the second condition, we get:
\[
\left| e^{2i\theta} + e^{-2i\theta} \right| = 1.
\]
Using the identity \( e^{ix} + e^{-ix} = 2\cos(x) \), we get:
\[
\left| 2\cos(2\theta) \right| = 1 \quad \Rightarrow \quad |\cos(2\theta)| = \frac{1}{2}.
\]
The solutions to \( |\cos(2\theta)| = \frac{1}{2} \) occur at:
\[
2\theta = \pm \frac{\pi}{3} + 2k\pi, \quad k \in {Z}.
\]
Thus, the solutions for \( \theta \) are:
\[
\theta = \pm \frac{\pi}{6} + k\pi.
\]
The distinct values of \( \theta \) in the interval \( [0, 2\pi) \) are:
\[
\theta = \frac{\pi}{6}, \frac{\pi}{3}, \frac{5\pi}{6}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}.
\]
Thus, there are 6 distinct solutions for \( \theta \), corresponding to 6 distinct complex numbers.