To find the number of complex numbers \( z \), that satisfy \( |z| = 1 \) and
\(\left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1,\)
we need to approach the problem using the properties of complex numbers and their magnitudes.
Given that \( |z| = 1 \), this implies \( z \) lies on the unit circle in the complex plane. So, if \( z = a + ib \), then \( a^2 + b^2 = 1 \).
The expression \( \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \) simplifies as follows:
Let \( z = e^{i\theta} \), thus \( \overline{z} = e^{-i\theta} \).
Then,
\(\frac{z}{\overline{z}} = e^{2i\theta}\) and \(\frac{\overline{z}}{z} = e^{-2i\theta}\).
Therefore:
\(\frac{z}{\overline{z}} + \frac{\overline{z}}{z} = e^{2i\theta} + e^{-2i\theta} = 2\cos(2\theta).\)
We need the absolute value of the above expression:
\(|2\cos(2\theta)| = 1.\)
This simply happens when:
\(\cos(2\theta) = \pm \frac{1}{2}.\)
The solutions to \(\cos(2\theta) = \pm \frac{1}{2}\) are:
\[ 2\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}, \frac{4\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}, \cdots \]
Hence, \( \theta = \frac{\pi}{6}, \frac{\pi}{3}, \frac{5\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{6}, \frac{4\pi}{3}, \frac{11\pi}{6}, \frac{5\pi}{3} \).
These angles represent 8 distinct solutions for \( z \), all having \( |z| = 1 \).
Therefore, the number of complex numbers \( z \) satisfying both conditions is 8.
We are given that \( |z| = 1 \). This means that the complex number \( z \) lies on the unit circle in the complex plane.
Any complex number on the unit circle can be written as: \( z = e^{i\theta} \), where \( \theta \) is the argument (angle) of \( z \).
The equation provided is:
\[ \left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1 \]
We know:
Now substitute into the equation:
\[ \frac{z}{\overline{z}} = \frac{e^{i\theta}}{e^{-i\theta}} = e^{2i\theta}, \quad \frac{\overline{z}}{z} = \frac{e^{-i\theta}}{e^{i\theta}} = e^{-2i\theta} \]
Now the equation becomes:
\[ \left| e^{2i\theta} + e^{-2i\theta} \right| = 1 \]
We use the identity: \( e^{ix} + e^{-ix} = 2\cos x \)
Applying this, we get:
\[ e^{2i\theta} + e^{-2i\theta} = 2\cos(2\theta) \Rightarrow |2\cos(2\theta)| = 1 \]
Divide both sides by 2:
\[ |\cos(2\theta)| = \frac{1}{2} \]
The cosine of an angle is \( \pm \frac{1}{2} \) at the following values within \( 0 \leq 2\theta < 2\pi \):
So we have 8 distinct values of \( 2\theta \) that satisfy the condition.
Divide each \( 2\theta \) by 2 to get the angle \( \theta \):
There are 8 distinct complex numbers \( z \) that satisfy the given condition.
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
