We are given that \( |z| = 1 \). This means that the complex number \( z \) lies on the unit circle in the complex plane.
Any complex number on the unit circle can be written as: \( z = e^{i\theta} \), where \( \theta \) is the argument (angle) of \( z \).
The equation provided is:
\[ \left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1 \]
We know:
Now substitute into the equation:
\[ \frac{z}{\overline{z}} = \frac{e^{i\theta}}{e^{-i\theta}} = e^{2i\theta}, \quad \frac{\overline{z}}{z} = \frac{e^{-i\theta}}{e^{i\theta}} = e^{-2i\theta} \]
Now the equation becomes:
\[ \left| e^{2i\theta} + e^{-2i\theta} \right| = 1 \]
We use the identity: \( e^{ix} + e^{-ix} = 2\cos x \)
Applying this, we get:
\[ e^{2i\theta} + e^{-2i\theta} = 2\cos(2\theta) \Rightarrow |2\cos(2\theta)| = 1 \]
Divide both sides by 2:
\[ |\cos(2\theta)| = \frac{1}{2} \]
The cosine of an angle is \( \pm \frac{1}{2} \) at the following values within \( 0 \leq 2\theta < 2\pi \):
So we have 8 distinct values of \( 2\theta \) that satisfy the condition.
Divide each \( 2\theta \) by 2 to get the angle \( \theta \):
There are 8 distinct complex numbers \( z \) that satisfy the given condition.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: