We are given that \( |z| = 1 \). This means that the complex number \( z \) lies on the unit circle in the complex plane.
Any complex number on the unit circle can be written as: \( z = e^{i\theta} \), where \( \theta \) is the argument (angle) of \( z \).
The equation provided is:
\[ \left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1 \]
We know:
Now substitute into the equation:
\[ \frac{z}{\overline{z}} = \frac{e^{i\theta}}{e^{-i\theta}} = e^{2i\theta}, \quad \frac{\overline{z}}{z} = \frac{e^{-i\theta}}{e^{i\theta}} = e^{-2i\theta} \]
Now the equation becomes:
\[ \left| e^{2i\theta} + e^{-2i\theta} \right| = 1 \]
We use the identity: \( e^{ix} + e^{-ix} = 2\cos x \)
Applying this, we get:
\[ e^{2i\theta} + e^{-2i\theta} = 2\cos(2\theta) \Rightarrow |2\cos(2\theta)| = 1 \]
Divide both sides by 2:
\[ |\cos(2\theta)| = \frac{1}{2} \]
The cosine of an angle is \( \pm \frac{1}{2} \) at the following values within \( 0 \leq 2\theta < 2\pi \):
So we have 8 distinct values of \( 2\theta \) that satisfy the condition.
Divide each \( 2\theta \) by 2 to get the angle \( \theta \):
There are 8 distinct complex numbers \( z \) that satisfy the given condition.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: