Step 1: Determine \( |z_1| \) and \( \arg(z_1) \). \[ |z_1| = \sqrt{(\sqrt{3})^2 + (2\sqrt{2})^2} = \sqrt{3 + 8} = \sqrt{11} \] \[ \arg(z_1) = \tan^{-1}\left(\frac{2\sqrt{2}}{\sqrt{3}}\right) \] Step 2: Calculate \( |z_2| \) and \( \arg(z_2) \). \[ |z_2| = \frac{|z_1|}{\sqrt{3}} = \frac{\sqrt{11}}{\sqrt{3}} = \frac{\sqrt{33}}{3} \] \[ \arg(z_2) = \arg(z_1) + \frac{\pi}{6} \] Step 3: Convert \( z_2 \) to Cartesian coordinates. \[ z_2 = \frac{\sqrt{33}}{3} \left( \cos\left(\arg(z_1) + \frac{\pi}{6}\right) + i \sin\left(\arg(z_1) + \frac{\pi}{6}\right) \right) \] Assume \( \cos(\arg(z_1)) = \frac{\sqrt{3}}{2} \) and \( \sin(\arg(z_1)) = \frac{1}{2} \) for simplification.
Step 4: Calculate the area of triangle ABO using the determinant method. \[ \text{Area} = \frac{1}{2} \left| x_1 y_2 - y_1 x_2 \right| = \frac{1}{2} \left| \sqrt{3} \cdot \frac{\sqrt{33}}{3} \cdot \frac{1}{2} - 2\sqrt{2} \cdot \frac{\sqrt{33}}{3} \cdot \frac{\sqrt{3}}{2} \right| \] \[ = \frac{1}{2} \left| \frac{\sqrt{33}\sqrt{3}}{6} - \sqrt{6}\sqrt{33} \right| = \frac{\sqrt{33}}{2} \left| \frac{\sqrt{3}}{6} - \sqrt{6} \right| \]
Step 5: Simplify to find the exact area. Apply angle addition formulas and trigonometric identities to find exact values and simplify to the final result.
\[ B = \left\{ x \geq 0 : \sqrt{x}(\sqrt{x - 4}) - 3\sqrt{x - 2} + 6 = 0 \right\}. \]
Then \( n(A \cup B) \) is equal to:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below:
The output of the circuit is low (zero) for:
(A) \( X = 0, Y = 0 \)
(B) \( X = 0, Y = 1 \)
(C) \( X = 1, Y = 0 \)
(D) \( X = 1, Y = 1 \)
Choose the correct answer from the options given below:
N equally spaced charges each of value \( q \) are placed on a circle of radius \( R \). The circle rotates about its axis with an angular velocity \( \omega \) as shown in the figure. A bigger Amperian loop \( B \) encloses the whole circle, whereas a smaller Amperian loop \( A \) encloses a small segment. The difference between enclosed currents, \( I_B - I_A \) for the given Amperian loops is: