To find the correct statement regarding the points given, we will determine the necessary characteristics and measurements of triangle ABO with vertices at \( O \) (the origin), \( A \) and \( B \).
Step 1: Calculate Modulus and Argument of \( z_1 \):
Given \( z_1 = \sqrt{3} + 2\sqrt{2}i \),
\(|z_1| = \sqrt{(\sqrt{3})^2 + (2\sqrt{2})^2} = \sqrt{3 + 8} = \sqrt{11}\).
The argument of \( z_1 \, (\arg(z_1)) = \tan^{-1}\left(\frac{2\sqrt{2}}{\sqrt{3}}\right)\).
Step 2: Determine Modulus and Argument of \( z_2 \):
It is given \( \sqrt{3}|z_2| = |z_1| \Rightarrow |z_2| = \frac{\sqrt{11}}{\sqrt{3}}\).
\(\arg(z_2) = \arg(z_1) + \frac{\pi}{6}\).
Step 3: Establish the Position of Points \( A \) and \( B \):
The point \( A \) is \( z_1 = \sqrt{3} + 2\sqrt{2}i \).
The point \( B \) is represented as \( z_2 \) such that\n\[ z_2 = r(\cos \theta + i\sin \theta) \] where \( r = \frac{\sqrt{11}}{\sqrt{3}} \), \(\theta = \arg(z_1) + \frac{\pi}{6}\).
Step 4: Compute Area of Triangle ABO:
The area \( \Delta \) of triangle with vertices at \( O(0,0) \), \( A(\sqrt{3}, 2\sqrt{2}) \), and \( B(x_2, y_2) \) is given by
\(\Delta = \frac{1}{2}|\sqrt{3}(y_2 - 0) + x_2(0 - 2\sqrt{2})| = \frac{1}{2}|\sqrt{3}y_2 - 2\sqrt{2}x_2|\).
Substituting \( x_2 = \text{Re}(z_2), y_2 = \text{Im}(z_2) \) and simplifying gives the area \(\Delta = \frac{11}{\sqrt{3}}\).
Conclusion:
The statement "Area of triangle ABO is \(\frac{11}{\sqrt{3}}\)" is correct.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are: