To find the correct statement regarding the points given, we will determine the necessary characteristics and measurements of triangle ABO with vertices at \( O \) (the origin), \( A \) and \( B \).
Step 1: Calculate Modulus and Argument of \( z_1 \):
Given \( z_1 = \sqrt{3} + 2\sqrt{2}i \),
\(|z_1| = \sqrt{(\sqrt{3})^2 + (2\sqrt{2})^2} = \sqrt{3 + 8} = \sqrt{11}\).
The argument of \( z_1 \, (\arg(z_1)) = \tan^{-1}\left(\frac{2\sqrt{2}}{\sqrt{3}}\right)\).
Step 2: Determine Modulus and Argument of \( z_2 \):
It is given \( \sqrt{3}|z_2| = |z_1| \Rightarrow |z_2| = \frac{\sqrt{11}}{\sqrt{3}}\).
\(\arg(z_2) = \arg(z_1) + \frac{\pi}{6}\).
Step 3: Establish the Position of Points \( A \) and \( B \):
The point \( A \) is \( z_1 = \sqrt{3} + 2\sqrt{2}i \).
The point \( B \) is represented as \( z_2 \) such that\n\[ z_2 = r(\cos \theta + i\sin \theta) \] where \( r = \frac{\sqrt{11}}{\sqrt{3}} \), \(\theta = \arg(z_1) + \frac{\pi}{6}\).
Step 4: Compute Area of Triangle ABO:
The area \( \Delta \) of triangle with vertices at \( O(0,0) \), \( A(\sqrt{3}, 2\sqrt{2}) \), and \( B(x_2, y_2) \) is given by
\(\Delta = \frac{1}{2}|\sqrt{3}(y_2 - 0) + x_2(0 - 2\sqrt{2})| = \frac{1}{2}|\sqrt{3}y_2 - 2\sqrt{2}x_2|\).
Substituting \( x_2 = \text{Re}(z_2), y_2 = \text{Im}(z_2) \) and simplifying gives the area \(\Delta = \frac{11}{\sqrt{3}}\).
Conclusion:
The statement "Area of triangle ABO is \(\frac{11}{\sqrt{3}}\)" is correct.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).