We are given the functional equation \( f(x + y) = f(x) + f(y) + 1 - \frac{2}{7}xy \) and the form of \( f(x) \).
Step 1: First, solve for the values of \( a \) and \( b \) by substituting \( x = y = 0 \) into the functional equation. This simplifies the equation.
Step 2: For \( f(x) \), substitute the given expression for \( f(x) \) and use the relation from step 1 to find \( a \) and \( b \).
Step 3: Once we have \( a \) and \( b \), calculate \( f(x) \) for \( x = 1, 2, 3, 4, 5 \).
Step 4: Now calculate \( 28 \sum_{i=1}^5 f(i) \) by plugging the values of \( f(i) \) into the summation.
Final Conclusion: The value of \( 28 \sum_{i=1}^5 f(i) \) is 735, which is Option 2.
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.