\[ B = \left\{ x \geq 0 : \sqrt{x}(\sqrt{x - 4}) - 3\sqrt{x - 2} + 6 = 0 \right\}. \]
Then \( n(A \cup B) \) is equal to:
Final Answer: \( n(A \cup B) = 4 \).
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then: