\[ B = \left\{ x \geq 0 : \sqrt{x}(\sqrt{x - 4}) - 3\sqrt{x - 2} + 6 = 0 \right\}. \]
Then \( n(A \cup B) \) is equal to:
Final Answer: \( n(A \cup B) = 4 \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: