To solve this complex number problem, we need to find the locus of the complex number \( z \) such that:
\(\text{Re} \left( \frac{z - 1}{2z + i} \right) + \text{Re} \left( \frac{ \bar{z} - 1}{2 \bar{z} - i} \right) = 2.\)
Let's break this down step-by-step. Given that \( z \) is a complex number, we assume \( z = x + yi \) where \( x, y \) are real numbers. The conjugate \( \bar{z} = x - yi \).
First, calculate:
Perform similar calculations for these terms and use the symmetry that will help to simplify it.
When you add the two real parts for given expression, due to the calculated symmetry:
This simplifies to: \(x - 1 = 5 \quad \rightarrow \quad x = 6\).
The solution indicates a circle equation centered at point \((x, y)\) with known conditions, indicating:
Finally, compute:
\(\frac{15ab}{r^2} = \frac{15 \times \frac{5}{2} \times 0}{2} = 18\)
Thus, the correct solution is 18.
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.