\(\text{Let }\) \( a, b \in [-3, 3] \), \( a + b \neq 0 \). We are given the conditions:
\[ \left| \frac{z - a}{z + b} \right| = 1 \quad \text{and} \quad \left| \begin{matrix} z + 1 & \omega & \omega^2 \\ \omega^2 & 1 & z + \omega \\ \omega^2 & 1 & z + \omega \end{matrix} \right| = 1 \] \(\text{Using the fact that }\) \( \omega \) \(\text{ and }\) \(\omega^2\) \(\text{ are the roots of }\) \(x^2 + x + 1 = 0\), we can proceed as follows: \[ \left| \frac{z - a}{z + b} \right| = |z - a| = |z + b| \] \(\text{From this, we know that }\) \( |z - a| = |z + b| \). \(\text{Next, solve for }\)z: \[ z^2 = 1 \quad \Rightarrow \quad z = \omega, \omega^2, 1 \] \(\text{Now, compute the possible values for }\) a \(\text{ and } b\) : \[ | - a | = | + b | \] \(\text{Thus, we get 10 possible ordered pairs for } (a, b).\)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: