\(\text{Let }\) \( a, b \in [-3, 3] \), \( a + b \neq 0 \). We are given the conditions:
\[ \left| \frac{z - a}{z + b} \right| = 1 \quad \text{and} \quad \left| \begin{matrix} z + 1 & \omega & \omega^2 \\ \omega^2 & 1 & z + \omega \\ \omega^2 & 1 & z + \omega \end{matrix} \right| = 1 \] \(\text{Using the fact that }\) \( \omega \) \(\text{ and }\) \(\omega^2\) \(\text{ are the roots of }\) \(x^2 + x + 1 = 0\), we can proceed as follows: \[ \left| \frac{z - a}{z + b} \right| = |z - a| = |z + b| \] \(\text{From this, we know that }\) \( |z - a| = |z + b| \). \(\text{Next, solve for }\)z: \[ z^2 = 1 \quad \Rightarrow \quad z = \omega, \omega^2, 1 \] \(\text{Now, compute the possible values for }\) a \(\text{ and } b\) : \[ | - a | = | + b | \] \(\text{Thus, we get 10 possible ordered pairs for } (a, b).\)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
\( z_1, z_2, z_3 \) represent the vertices A, B, C of a triangle ABC respectively in the Argand plane. If
\[ |z_1 - z_2| = \sqrt{25 - 12 \sqrt{3}}, \] \[ \left|\frac{z_1 - z_3}{z_2 - z_3}\right| = \frac{3}{4}, \] \[ \text{and } \angle ACB = 30^\circ, \]
Then the area (in sq. units) of that triangle is: