For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
\[ \int \left( \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} \right) dt \]
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]
The coefficient of \( x^{14}y \) in the expansion of \( (x^2 + \sqrt{y})^9 \) is:
Let \( f(x) = x \sin(x^4) \). Then \( f'(x) \) at \( x = \sqrt[4]{\pi} \) is equal to:
Let \( f(x) = 2 - 7 \sin{\left( \frac{2x}{7} \right)} \). Then the maximum value of \( f(x) \) is:
If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Let \[ A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 3 & -1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 \\ \alpha \\ -1 \end{pmatrix}. \] If \[ AB = \begin{pmatrix} -2 \\ 6 \end{pmatrix}, \] then the value of \( \alpha \) is equal to:
If \( 0 \leq x \leq 5 \), then the greatest value of \( \alpha \) and the least value of \( \beta \) satisfying the inequalities \( \alpha \leq 3x + 5 \leq \beta \) are, respectively,