We are given the integral:
\[
I = \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx
\]
Step 1: Use substitution
Let \( u = \sqrt{4x^2 + 7} \). Then:
\[
\frac{du}{dx} = \frac{8x}{2\sqrt{4x^2 + 7}} = \frac{4x}{\sqrt{4x^2 + 7}}
\]
Thus, we have \( du = \frac{4x}{\sqrt{4x^2 + 7}} \, dx \), and the integral becomes:
\[
I = \int \cos(u) \, du
\]
Step 2: Integrate
The integral of \( \cos(u) \) is \( \sin(u) \), so we have:
\[
I = \sin(u) + C
\]
Step 3: Substitute back \( u \)
Now substitute \( u = \sqrt{4x^2 + 7} \) back into the equation:
\[
I = \sin \left( \sqrt{4x^2 + 7} \right) + C
\]
Thus, the value of the integral is:
\[
\sin \left( \sqrt{4x^2 + 7} \right) + C
\]
Thus, the correct answer is option (C), \( \sin \left( \sqrt{4x^2 + 7} \right) + C \).