If \( a = \frac{1 + \tan \theta + \sec \theta}{2 \sec \theta} \) and \( b = \frac{\sin \theta}{1 - \sec \theta + \tan \theta} \), then \( \frac{a}{b} \) is equal to:
\[ \int \left( \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} \right) dt \]
The value of \( x \) that satisfies the equation:
\[ \begin{vmatrix} x & 1 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = 6 \]
The coefficient of \( x^{14}y \) in the expansion of \( (x^2 + \sqrt{y})^9 \) is:
The value of \[ \left(\frac{10i}{(2-i)(3-i)}\right)^{2024} \] is equal to:
If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{3}\). If \(\|\vec{a}\| = 5\) and \(\|\vec{b}\| = 10\), then \(\|\vec{a} + \vec{b}\|\) is equal to:
For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]
A particle is moving along the curve \( y = 8x + \cos y \), where \( 0 \leq y \leq \pi \). If at a point the ordinate is changing 4 times as fast as the abscissa, then the coordinates of the point are:
The integral \(\int e^x \sqrt{e^x} \, dx\) equals: