The expression given is a form of complex numbers. Let’s simplify the expression:
\[
\frac{1 + \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right)}{1 + \cos\left(\frac{\pi}{5}\right) - i \sin\left(\frac{\pi}{5}\right)}.
\]
This is a standard form for complex numbers, and by multiplying both the numerator and denominator by the conjugate of the denominator:
\[
\frac{1 + \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right)}{1 + \cos\left(\frac{\pi}{5}\right) - i \sin\left(\frac{\pi}{5}\right)} \times \frac{1 + \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right)}{1 + \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right)}.
\]
The denominator becomes:
\[
(1 + \cos\left(\frac{\pi}{5}\right))^2 + \sin^2\left(\frac{\pi}{5}\right) = 2(1 + \cos\left(\frac{\pi}{5}\right)).
\]
The numerator simplifies to:
\[
1 + \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right),
\]
which is equal to:
\[
\cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right).
\]
Thus, the final expression is \( \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right) \), which matches option (A).