For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
Let \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^2 x}{1+5^x} \, dx \). Then:
\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]