Let’s first find the modulus of each complex number. The modulus of a complex number \( z = a + bi \) is given by:
\[
|z| = \sqrt{a^2 + b^2}
\]
Step 1: Calculate the modulus of each part.
1. Modulus of \( (1 + i) \):
\[
|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}
\]
So, \( |(1 + i)^{10}| = (\sqrt{2})^{10} = 2^5 = 32 \).
2. Modulus of \( (2 - i) \):
\[
|2 - i| = \sqrt{2^2 + (-1)^2} = \sqrt{5}
\]
So, \( |(2 - i)^6| = (\sqrt{5})^6 = 5^3 = 125 \).
3. Modulus of \( (2i - 4) \):
\[
|2i - 4| = \sqrt{(-4)^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = 2\sqrt{5}
\]
So, \( |(2i - 4)^4| = (2\sqrt{5})^4 = 4^2 \cdot 5^2 = 16 \cdot 25 = 400 \).
Step 2: Now, calculate the modulus of the entire expression:
\[
\left| \frac{(1 + i)^{10} (2 - i)^6}{(2i - 4)^4} \right| = \frac{|(1 + i)^{10}| \cdot |(2 - i)^6|}{|(2i - 4)^4|}
\]
Substitute the values we calculated:
\[
= \frac{32 \cdot 125}{400} = \frac{4000}{400} = 10
\]
Thus, the correct answer is option (B), 10.