Step 1: The given expression is: \[ |\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}|^2. \] First, expand the square of the vector: \[ |\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}|^2 = (\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}) \cdot (\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}). \] Using the distributive property of the dot product: \[ = \vec{a} \cdot \vec{a} - 2 (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{b}) + (\vec{a} \cdot \vec{b})^2 \vec{b} \cdot \vec{b}. \] Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have \( \vec{a} \cdot \vec{a} = 1 \) and \( \vec{b} \cdot \vec{b} = 1 \).
So the expression becomes: \[ 1 - 2 (\vec{a} \cdot \vec{b})^2 + (\vec{a} \cdot \vec{b})^2. \] Thus, we get: \[ 1 - (\vec{a} \cdot \vec{b})^2. \] Now, using the formula for the dot product of two unit vectors: \[ \vec{a} \cdot \vec{b} = \cos \theta. \] Therefore, the expression becomes: \[ 1 - \cos^2 \theta. \] Using the trigonometric identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can simplify this to: \[ \sin^2 \theta. \]
Thus, the correct answer is option (B).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: