Step 1: The given expression is: \[ |\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}|^2. \] First, expand the square of the vector: \[ |\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}|^2 = (\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}) \cdot (\vec{a} - (\vec{a} \cdot \vec{b}) \vec{b}). \] Using the distributive property of the dot product: \[ = \vec{a} \cdot \vec{a} - 2 (\vec{a} \cdot \vec{b}) (\vec{a} \cdot \vec{b}) + (\vec{a} \cdot \vec{b})^2 \vec{b} \cdot \vec{b}. \] Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have \( \vec{a} \cdot \vec{a} = 1 \) and \( \vec{b} \cdot \vec{b} = 1 \).
So the expression becomes: \[ 1 - 2 (\vec{a} \cdot \vec{b})^2 + (\vec{a} \cdot \vec{b})^2. \] Thus, we get: \[ 1 - (\vec{a} \cdot \vec{b})^2. \] Now, using the formula for the dot product of two unit vectors: \[ \vec{a} \cdot \vec{b} = \cos \theta. \] Therefore, the expression becomes: \[ 1 - \cos^2 \theta. \] Using the trigonometric identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can simplify this to: \[ \sin^2 \theta. \]
Thus, the correct answer is option (B).
The focus of the parabola \(y^2 + 4y - 8x + 20 = 0\) is at the point:
Let \( S \) denote the set of all subsets of integers containing more than two numbers. A relation \( R \) on \( S \) is defined by:
\[ R = \{ (A, B) : \text{the sets } A \text{ and } B \text{ have at least two numbers in common} \}. \]
Then the relation \( R \) is:
The centre of the hyperbola \(16x^2 - 4y^2 + 64x - 24y - 36 = 0\) is at the point: