We are tasked with simplifying the expression:
\[
(\sec A - \cos A)(\tan A - \cot A).
\]
Step 1: First, express \( \sec A \) and \( \cot A \) in terms of \( \sin A \) and \( \cos A \):
- \( \sec A = \frac{1}{\cos A} \),
- \( \cot A = \frac{\cos A}{\sin A} \).
Substitute these into the given expression:
\[
\left( \frac{1}{\cos A} - \cos A \right) \left( \tan A - \frac{\cos A}{\sin A} \right).
\]
Step 2: Simplify the first part \( \frac{1}{\cos A} - \cos A \). We get a common denominator:
\[
\frac{1}{\cos A} - \cos A = \frac{1 - \cos^2 A}{\cos A}.
\]
Using the identity \( 1 - \cos^2 A = \sin^2 A \), this becomes:
\[
\frac{\sin^2 A}{\cos A}.
\]
Step 3: Now, simplify the second part \( \tan A - \frac{\cos A}{\sin A} \):
\[
\tan A = \frac{\sin A}{\cos A}, \quad \frac{\cos A}{\sin A} = \cot A.
\]
Thus, we have:
\[
\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A}.
\]
To combine these terms, find a common denominator:
\[
\frac{\sin^2 A - \cos^2 A}{\sin A \cos A}.
\]
This can be written as:
\[
\frac{-(\cos^2 A - \sin^2 A)}{\sin A \cos A} = - \frac{\cos 2A}{\sin A \cos A}.
\]
Step 4: Now multiply the two parts:
\[
\frac{\sin^2 A}{\cos A} \times \left( -\frac{\cos^2 A - \sin^2 A}{\sin A \cos A} \right) = - \frac{\sin A (1 - \tan^2 A)}{1}.
\]
Thus, the simplified expression is:
\[
- \sin A (1 - \tan^2 A).
\]
Therefore, the correct answer is option (B).