We are given that:
\[
XA = B.
\]
To solve for \( X \), we multiply both sides by the inverse of \( A \) on the right:
\[
X = B A^{-1}.
\]
Step 1: Find the inverse of \( A \). The formula for the inverse of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is:
\[
A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.
\]
For \( A = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} \), we have:
\[
\text{Determinant of } A = (0)(2) - (1)(-1) = 1.
\]
So, the inverse is:
\[
A^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}.
\]
Step 2: Now, calculate \( X = B A^{-1} \):
\[
B = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}.
\]
Multiply \( B \) and \( A^{-1} \):
\[
X = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}
= \begin{pmatrix} (1)(2) + (1)(1) & (1)(-1) + (1)(0) \\ (-1)(2) + (-1)(1) & (-1)(-1) + (-1)(0) \end{pmatrix}.
\]
\[
X = \begin{pmatrix} 3 & -1 \\ -3 & 1 \end{pmatrix}.
\]
Thus, the value of \( X \) is \( \begin{pmatrix} 3 & -1 \\ -3 & 1 \end{pmatrix} \).
Therefore, the correct answer is option (C).