Let \[ A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 3 & -1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 \\ \alpha \\ -1 \end{pmatrix}. \] If \[ AB = \begin{pmatrix} -2 \\ 6 \end{pmatrix}, \] then the value of \( \alpha \) is equal to:
To find \( \alpha \), perform the matrix multiplication \( AB \).
Step 1: Compute the first element of \( AB \). \[ 3 \times 1 + (-2) \times \alpha + 1 \times (-1) = -2. \] Simplifying, we get: \[ 3 - 2\alpha - 1 = -2 \quad \Rightarrow \quad 2 - 2\alpha = -2 \quad \Rightarrow \quad -2\alpha = -4 \quad \Rightarrow \quad \alpha = 2. \]
Step 2: Verify with the second element of \( AB \). \[ -1 \times 1 + 3 \times \alpha + (-1) \times (-1) = 6. \] Simplifying, we find: \[ -1 + 3 \times 2 + 1 = 6 \quad \Rightarrow \quad -1 + 6 + 1 = 6 \quad \Rightarrow \quad 6 = 6. \] The calculation confirms the correct value of \( \alpha \).
Conclusion: The value of \( \alpha \) is \( 2 \), which matches option (D).
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
The minimum value of the function \( f(x) = x^4 - 4x - 5 \), where \( x \in \mathbb{R} \), is:
The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: