Given:
\[
\sec \theta + \tan \theta = 2 + \sqrt{3}
\]
Using the identity for the product of secant and tangent sum and difference:
\[
(\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = \sec^2 \theta - \tan^2 \theta = 1
\]
We can solve for \(\sec \theta - \tan \theta\) by using the given sum:
\[
\sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta} = \frac{1}{2 + \sqrt{3}}
\]
To simplify \(\frac{1}{2 + \sqrt{3}}\), multiply the numerator and the denominator by the conjugate of the denominator:
\[
\frac{1}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}
\]