The critical points of the function \( f(x) = (x-3)^3(x+2)^2 \) are:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
The value of the limit \(\lim_{x \to 0} \frac{(2 + \cos 3x) \sin^2 x}{x \tan(2x)}\) is equal to:
The foci of the ellipse \(\frac{x^2}{49} + \frac{y^2}{24} = 1\) are:
Let \[ A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 3 & -1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 \\ \alpha \\ -1 \end{pmatrix}. \] If \[ AB = \begin{pmatrix} -2 \\ 6 \end{pmatrix}, \] then the value of \( \alpha \) is equal to:
The value of the limit \(\lim_{t \to 0} \frac{(5-t)^2 - 25}{t}\) is equal to:
Let \( f(x) = \begin{cases} x^2 - \alpha, & \text{if } x < 1 \\ \beta x - 3, & \text{if } x \geq 1 \end{cases} \). If \( f \) is continuous at \( x = 1 \), then the value of \( \alpha + \beta \) is:
A particle is moving along the curve \( y = 8x + \cos y \), where \( 0 \leq y \leq \pi \). If at a point the ordinate is changing 4 times as fast as the abscissa, then the coordinates of the point are:
For \(1 \leq x<\infty\), let \(f(x) = \sin^{-1}\left(\frac{1}{x}\right) + \cos^{-1}\left(\frac{1}{x}\right)\). Then \(f'(x) =\)
Let \( f(x) = x \sin(x^4) \). Then \( f'(x) \) at \( x = \sqrt[4]{\pi} \) is equal to:
The vectors \(\vec{a} = 4\mathbf{i} - 3\mathbf{j} - \mathbf{k}\) and \(\vec{b} = 3\mathbf{i} + 2\mathbf{j} + \lambda\mathbf{k}\) are perpendicular to each other. Then the value of \(\lambda\) is equal to: