\[ \int \left( \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} \right) dt \]
First, simplify the integrand by combining the terms: \[ \frac{\log_e t}{1+t} + \frac{\log_e t}{t(1+t)} = \frac{\log_e t (1 + \frac{1}{t})}{1+t} = \frac{\log_e t (1 + t^{-1})}{1+t} \] \[ = \frac{\log_e t (t+1) t^{-1}}{1+t} = \frac{\log_e t}{t} \] Now, integrate the simplified expression: \[ \int \frac{\log_e t}{t} \, dt \] Using the integration by parts formula, let: \( u = \log_e t \) and \( dv = \frac{1}{t} dt \). Then, \( du = \frac{1}{t} dt \) and \( v = \log_e t \).
Apply integration by parts: \[ \int u \, dv = uv - \int v \, du \] \[ = (\log_e t)(\log_e t) - \int (\log_e t) \frac{1}{t} dt \] \[ = (\log_e t)^2 - \int \frac{\log_e t}{t} dt \] Let \( I = \int \frac{\log_e t}{t} dt \), then: \[ I = (\log_e t)^2 - I \] \[ 2I = (\log_e t)^2 \] \[ I = \frac{(\log_e t)^2}{2} \] Thus, the integral evaluates to: \[ \int \frac{\log_e t}{t} dt = \frac{(\log_e t)^2}{2} + C \]
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:If \( f'(x) = 4x\cos^2(x) \sin\left(\frac{x}{4}\right) \), then \( \lim_{x \to 0} \frac{f(\pi + x) - f(\pi)}{x} \) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to:
The general solution of the differential equation \( \frac{dy}{dx} = xy - 2x - 2y + 4 \) is:
\[ \int \frac{4x \cos \left( \sqrt{4x^2 + 7} \right)}{\sqrt{4x^2 + 7}} \, dx \]