We are given two parametric equations of straight lines:
\[
\overrightarrow{r_1} = (i - 2j + 3k) + s(2i + j + k)
\]
and
\[
\overrightarrow{r_2} = (-i + 2j + 7k) + t(i + j + k).
\]
To find the common point, we equate the two vectors \( \overrightarrow{r_1} \) and \( \overrightarrow{r_2} \).
Step 1: Express both vector equations in component form:
\[
\overrightarrow{r_1} = (1 + 2s)i + (-2 + s)j + (3 + s)k
\]
and
\[
\overrightarrow{r_2} = (-1 + t)i + (2 + t)j + (7 + t)k.
\]
Step 2: Set the components of \( \overrightarrow{r_1} \) and \( \overrightarrow{r_2} \) equal to each other:
\[
1 + 2s = -1 + t, \quad -2 + s = 2 + t, \quad 3 + s = 7 + t.
\]
Step 3: Solve the system of equations:
From \( 1 + 2s = -1 + t \), we get:
\[
t = 2s + 2. \quad {(Equation 1)}
\]
From \( -2 + s = 2 + t \), we substitute \( t = 2s + 2 \) into this equation:
\[
-2 + s = 2 + (2s + 2),
\]
\[
-2 + s = 2 + 2s + 2 \quad \Rightarrow \quad -2 + s = 4 + 2s,
\]
\[
s = -6.
\]
Substitute \( s = -6 \) into Equation 1:
\[
t = 2(-6) + 2 = -12 + 2 = -10.
\]
Step 4: Substitute \( s = -6 \) and \( t = -10 \) into the vector equations to find the common point. Using \( s = -6 \) in \( \overrightarrow{r_1} \):
\[
\overrightarrow{r_1} = (1 + 2(-6))i + (-2 + (-6))j + (3 + (-6))k = (-11)i + (-8)j + (-3)k.
\]
Thus, the common point is \( (-11, -8, -3) \).
Therefore, the correct answer is option (B).