Question:

The common point of the two straight lines r1=(i2j+3k)+s(2i+j+k)andr2=(i+2j+7k)+t(i+j+k),t,sR \overrightarrow{r_1} = (i - 2j + 3k) + s(2i + j + k) \quad {and} \quad \overrightarrow{r_2} = (-i + 2j + 7k) + t(i + j + k), \quad t, s \in \mathbb{R} is:

Show Hint

To find the common point of two straight lines, equate their parametric equations and solve for the parameters. Then substitute the values of the parameters into either equation to get the common point.
Updated On: Mar 11, 2025
  • (11,8,3) (11, 8, -3)
  • (11,8,3) (-11, -8, -3)
  • (11,8,3) (11, -8, 3)
  • (11,8,3) (11, -8, -3)
  • (9,8,3) (9, 8, -3)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given two parametric equations of straight lines: r1=(i2j+3k)+s(2i+j+k) \overrightarrow{r_1} = (i - 2j + 3k) + s(2i + j + k) and r2=(i+2j+7k)+t(i+j+k). \overrightarrow{r_2} = (-i + 2j + 7k) + t(i + j + k). To find the common point, we equate the two vectors r1 \overrightarrow{r_1} and r2 \overrightarrow{r_2} .
Step 1: Express both vector equations in component form: r1=(1+2s)i+(2+s)j+(3+s)k \overrightarrow{r_1} = (1 + 2s)i + (-2 + s)j + (3 + s)k and r2=(1+t)i+(2+t)j+(7+t)k. \overrightarrow{r_2} = (-1 + t)i + (2 + t)j + (7 + t)k. Step 2: Set the components of r1 \overrightarrow{r_1} and r2 \overrightarrow{r_2} equal to each other: 1+2s=1+t,2+s=2+t,3+s=7+t. 1 + 2s = -1 + t, \quad -2 + s = 2 + t, \quad 3 + s = 7 + t. Step 3: Solve the system of equations: From 1+2s=1+t 1 + 2s = -1 + t , we get: t=2s+2.(Equation1) t = 2s + 2. \quad {(Equation 1)} From 2+s=2+t -2 + s = 2 + t , we substitute t=2s+2 t = 2s + 2 into this equation: 2+s=2+(2s+2), -2 + s = 2 + (2s + 2), 2+s=2+2s+22+s=4+2s, -2 + s = 2 + 2s + 2 \quad \Rightarrow \quad -2 + s = 4 + 2s, s=6. s = -6. Substitute s=6 s = -6 into Equation 1: t=2(6)+2=12+2=10. t = 2(-6) + 2 = -12 + 2 = -10. Step 4: Substitute s=6 s = -6 and t=10 t = -10 into the vector equations to find the common point. Using s=6 s = -6 in r1 \overrightarrow{r_1} : r1=(1+2(6))i+(2+(6))j+(3+(6))k=(11)i+(8)j+(3)k. \overrightarrow{r_1} = (1 + 2(-6))i + (-2 + (-6))j + (3 + (-6))k = (-11)i + (-8)j + (-3)k.
Thus, the common point is (11,8,3) (-11, -8, -3) .
Therefore, the correct answer is option (B).
Was this answer helpful?
0
0

Questions Asked in KEAM exam

View More Questions