To find the inverse of \( f(x) = \frac{x}{1 - x} \), we solve for \( x \) in terms of \( y \):
\[
y = \frac{x}{1 - x}.
\]
Multiplying both sides by \( 1 - x \) and solving for \( x \), we get:
\[
y(1 - x) = x \quad \Rightarrow \quad y - yx = x \quad \Rightarrow \quad y = x(1 + y) \quad \Rightarrow \quad x = \frac{y}{1 + y}.
\]
Thus, the inverse function is \( f^{-1}(y) = \frac{y}{1 + y} \), where \( y \neq -1 \).