Step 1: Use the property of logarithms \( \frac{1}{\log_b x} = \log_x b \).
This simplifies the given equation to: \[ \log_x 2 + \log_x 3 + \log_x 4 + \log_x 5 + \log_x 6 = 1 \] Simplifying the sum gives: \[ \log_x (2 \times 3 \times 4 \times 5 \times 6) = \log_x 720 \] Thus, \( x = 720 \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.