Question:

Evaluate the integral: \[ \int \frac{\sin \theta \sin 2\theta}{1 - \cos 2\theta} d\theta. \]

Show Hint

Use trigonometric identities to simplify integrals before attempting direct integration.
Updated On: Mar 6, 2025
  • \( 1 + \cos \theta + C \)
  • \( 1 + \sin \theta + C \)
  • \( \sin \theta + C \)
  • \( 1 + \cos 2\theta + C \)
  • \( 1 + \sin 2\theta + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Simplify the denominator Using the identity: \[ 1 - \cos 2\theta = 2 \sin^2 \theta. \] Step 2: Expand the numerator Using \( \sin 2\theta = 2 \sin \theta \cos \theta \), the numerator becomes: \[ \sin \theta \cdot 2 \sin \theta \cos \theta = 2 \sin^2 \theta \cos \theta. \] Thus, the integral simplifies to: \[ \int \frac{2 \sin^2 \theta \cos \theta}{2 \sin^2 \theta} d\theta. \] Canceling \( 2 \sin^2 \theta \): \[ \int \cos \theta d\theta. \] Step 3: Integrate \[ \int \cos \theta d\theta = \sin \theta + C. \] Thus, the correct answer is (C) \( \sin \theta + C \).
Was this answer helpful?
0
0