Step 1: Simplify the denominator
Using the identity:
\[
1 - \cos 2\theta = 2 \sin^2 \theta.
\]
Step 2: Expand the numerator
Using \( \sin 2\theta = 2 \sin \theta \cos \theta \), the numerator becomes:
\[
\sin \theta \cdot 2 \sin \theta \cos \theta = 2 \sin^2 \theta \cos \theta.
\]
Thus, the integral simplifies to:
\[
\int \frac{2 \sin^2 \theta \cos \theta}{2 \sin^2 \theta} d\theta.
\]
Canceling \( 2 \sin^2 \theta \):
\[
\int \cos \theta d\theta.
\]
Step 3: Integrate
\[
\int \cos \theta d\theta = \sin \theta + C.
\]
Thus, the correct answer is (C) \( \sin \theta + C \).