Step 1: We are given \( \cos \theta + \sin \theta = \sqrt{2} \). We square both sides of the equation: \[ (\cos \theta + \sin \theta)^2 = (\sqrt{2})^2 \] Expanding the left side: \[ \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta = 2 \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \), we get: \[ 1 + 2 \cos \theta \sin \theta = 2 \quad \Rightarrow \quad 2 \cos \theta \sin \theta = 1 \] Thus, \( \cos \theta \sin \theta = \frac{1}{2} \).
Step 2: Now we calculate \( \cos \theta - \sin \theta \) by squaring: \[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta - 2 \cos \theta \sin \theta + \sin^2 \theta \] Substituting the known values: \[ 1 - 2 \times \frac{1}{2} = 1 - 1 = 0 \] Thus, \( \cos \theta - \sin \theta = 0 \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: