Step 1: We are given \( \cos \theta + \sin \theta = \sqrt{2} \). We square both sides of the equation: \[ (\cos \theta + \sin \theta)^2 = (\sqrt{2})^2 \] Expanding the left side: \[ \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta = 2 \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \), we get: \[ 1 + 2 \cos \theta \sin \theta = 2 \quad \Rightarrow \quad 2 \cos \theta \sin \theta = 1 \] Thus, \( \cos \theta \sin \theta = \frac{1}{2} \).
Step 2: Now we calculate \( \cos \theta - \sin \theta \) by squaring: \[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta - 2 \cos \theta \sin \theta + \sin^2 \theta \] Substituting the known values: \[ 1 - 2 \times \frac{1}{2} = 1 - 1 = 0 \] Thus, \( \cos \theta - \sin \theta = 0 \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.