Given \( A^2 = A \), we have: \[ A^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix}^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \] Calculating \( A^2 \): \[ A^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \times \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 16 - 12 & -4 + x \\ 48 + 12x & -12 + x^2 \end{bmatrix} \] Equating this to \( A \): \[ \begin{bmatrix} 16 - 12 & -4 + x \\ 48 + 12x & -12 + x^2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \]
We solve the system of equations:
1. \( 16 - 12 = 4 \), so this is satisfied.
2. \( -4 + x = -1 \Rightarrow x = 3 \).
3. \( 48 + 12x = 12 \Rightarrow 12x = -36 \Rightarrow x = -3 \).
4. \( -12 + x^2 = x \Rightarrow x^2 - x - 12 = 0 \Rightarrow (x - 3)(x + 4) = 0 \Rightarrow x = -3 \).
Thus, \( x = -3 \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.