Given \( A^2 = A \), we have: \[ A^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix}^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \] Calculating \( A^2 \): \[ A^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \times \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 16 - 12 & -4 + x \\ 48 + 12x & -12 + x^2 \end{bmatrix} \] Equating this to \( A \): \[ \begin{bmatrix} 16 - 12 & -4 + x \\ 48 + 12x & -12 + x^2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \]
We solve the system of equations:
1. \( 16 - 12 = 4 \), so this is satisfied.
2. \( -4 + x = -1 \Rightarrow x = 3 \).
3. \( 48 + 12x = 12 \Rightarrow 12x = -36 \Rightarrow x = -3 \).
4. \( -12 + x^2 = x \Rightarrow x^2 - x - 12 = 0 \Rightarrow (x - 3)(x + 4) = 0 \Rightarrow x = -3 \).
Thus, \( x = -3 \).
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to: