Given \( A^2 = A \), we have: \[ A^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix}^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \] Calculating \( A^2 \): \[ A^2 = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \times \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 16 - 12 & -4 + x \\ 48 + 12x & -12 + x^2 \end{bmatrix} \] Equating this to \( A \): \[ \begin{bmatrix} 16 - 12 & -4 + x \\ 48 + 12x & -12 + x^2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 12 & x \end{bmatrix} \]
We solve the system of equations:
1. \( 16 - 12 = 4 \), so this is satisfied.
2. \( -4 + x = -1 \Rightarrow x = 3 \).
3. \( 48 + 12x = 12 \Rightarrow 12x = -36 \Rightarrow x = -3 \).
4. \( -12 + x^2 = x \Rightarrow x^2 - x - 12 = 0 \Rightarrow (x - 3)(x + 4) = 0 \Rightarrow x = -3 \).
Thus, \( x = -3 \).
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: