Since the function \( |x - 2| \) changes behavior at \( x = 2 \), we split the integral into two parts:
\[
\int_{0}^{3} |x - 2| \,dx = \int_{0}^{2} (2 - x) \,dx + \int_{2}^{3} (x - 2) \,dx
\]
Evaluating each integral:
\[
\int_{0}^{2} (2 - x) \,dx = \left[ 2x - \frac{x^2}{2} \right]_{0}^{2} = \left( 4 - 2 \right) - \left( 0 - 0 \right) = 2
\]
\[
\int_{2}^{3} (x - 2) \,dx = \left[ \frac{x^2}{2} - 2x \right]_{2}^{3} = \left( \frac{9}{2} - 6 \right) - \left( \frac{4}{2} - 4 \right)
\]
\[
= \left( \frac{9}{2} - 6 \right) - \left( 2 - 4 \right) = \left( \frac{9}{2} - \frac{12}{2} \right) + 2 = \left( \frac{-3}{2} + 2 \right) = \frac{1}{2}
\]
Adding both parts:
\[
2 + \frac{1}{2} = \frac{5}{2}
\]
Thus, the correct answer is (C) \( \frac{5}{2} \).