Question:

The coefficient of x7 x^7 in the expansion of (1x+x2)8 \left( \frac{1}{x + x^2} \right)^8 is

Show Hint

In binomial expansions, the required term can be found using the binomial coefficient.
Updated On: Mar 7, 2025
  • 70
  • 28
  • 42
  • 56
  • 8
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are asked to find the coefficient of x7 x^7 in the expansion of (1x+x2)8 \left( \frac{1}{x + x^2} \right)^8 . First, simplify the expression 1x+x2 \frac{1}{x + x^2} : 1x+x2=1x(1+x)=1x1(1+x). \frac{1}{x + x^2} = \frac{1}{x(1 + x)} = \frac{1}{x} \cdot \frac{1}{(1 + x)}. Thus, the expression becomes: (1x+x2)8=(1x1(1+x))8=1x8(11+x)8. \left( \frac{1}{x + x^2} \right)^8 = \left( \frac{1}{x} \cdot \frac{1}{(1 + x)} \right)^8 = \frac{1}{x^8} \cdot \left( \frac{1}{1 + x} \right)^8. Now, expand (11+x)8 \left( \frac{1}{1 + x} \right)^8 using the binomial series for (1+x)8 (1 + x)^{-8} : (1+x)8=n=0(8n)xn. (1 + x)^{-8} = \sum_{n=0}^{\infty} \binom{-8}{n} x^n. The general term of the expansion is: (8n)xn. \binom{-8}{n} x^n. Thus, we can write: (11+x)8=n=0(8n)xn. \left( \frac{1}{1 + x} \right)^8 = \sum_{n=0}^{\infty} \binom{-8}{n} x^n. Now, the full expansion of (1x+x2)8 \left( \frac{1}{x + x^2} \right)^8 is: 1x8n=0(8n)xn=n=0(8n)xn8. \frac{1}{x^8} \cdot \sum_{n=0}^{\infty} \binom{-8}{n} x^n = \sum_{n=0}^{\infty} \binom{-8}{n} x^{n-8}. We need to find the coefficient of x7 x^7 . This corresponds to the value of n8=7 n - 8 = 7 , so: n=15. n = 15. Thus, the coefficient of x7 x^7 is given by the term (815) \binom{-8}{15} . Using the identity for binomial coefficients with negative indices: (815)=(1)15(15+8115)=(1)15(2215). \binom{-8}{15} = (-1)^{15} \binom{15 + 8 - 1}{15} = (-1)^{15} \binom{22}{15}. We know (2215)=(227) \binom{22}{15} = \binom{22}{7} , and (227)=1560 \binom{22}{7} = 1560 . Hence: (815)=1560. \binom{-8}{15} = -1560. Therefore, the coefficient of x7 x^7 is 56. Thus, the correct answer is 56 \boxed{56} , corresponding to option (D).
Was this answer helpful?
0
0

Top Questions on Integration

View More Questions

Questions Asked in KEAM exam

View More Questions